Article

N-glycosylation of CD97 within the EGF domains is crucial for epitope accessibility in normal and malignant cells as well as CD55 ligand binding.

Institute of Anatomy, University of Leipzig, Leipzig, Germany.
International Journal of Cancer (Impact Factor: 5.01). 01/2005; 112(5):815-22. DOI: 10.1002/ijc.20483
Source: PubMed

ABSTRACT CD97 is an EGF-TM7 receptor found on various carcinomas where expression levels correlate with dedifferentiation and tumor stage, smooth muscle cells and leukocytes. CD97 acts as an adhesion molecule by binding to its cellular ligand, CD55. In this study, we demonstrate that 2 immunodominant CD97 epitopes are not equally present in the various cell types. Differences were apparent in gastrointestinal tumors and smooth muscle cells where monoclonal antibodies (mAbs) to the first epidermal growth factor (EGF) domain (CD97(EGF)) showed a more restricted staining pattern than mAbs to the stalk region (CD97(stalk)). This discrepancy was not detectable in cultured gastrointestinal tumor cell lines. In fact, the selection of the CD97 mAb influences the result of clinical studies. Thus, we clarified the reason(s) for these differences in CD97 mAb staining on various cell types. We provide evidence that epitope accessibility for CD97(EGF) mAbs depends on N-glycosylation. Immunoprecipitation of CD97 from the Colo 205 tumor cell line revealed the established 78 and 83 kDa products, while a 52 and 57 kDa band were obtained from smooth muscle cells. N-glycosidase F reduced the size of CD97 in Colo 205 cells to 52-57 kDa. Culturing these cells with tunicamycin resulted in the same decrease in size and impaired CD97(EGF) mAb binding. As shown by site-directed mutagenesis, deletion of the N-glycosylation sites located within the EGF domains efficiently disturbed CD97(EGF) mAb immunoreactivity and, importantly, binding of CD55. In conclusion, CD97(EGF) epitope accessibility for mAbs and ligand binding is influenced by cell type-specific N-glycosylation.

0 Bookmarks
 · 
68 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD97 is a member of the epidermal growth factor-seven transmembrane family. It affects tumor aggressiveness by binding its cellular ligand CD55 and exhibits adhesive properties. Previous studies have shown that CD97 and CD55 are involved in the dedifferentiation, migration, invasiveness and metastasis of tumors. However, little is known regarding the roles of CD97 and CD55 in pancreatic cancer. In this study, immunohistochemistry was used to analyze CD97 and CD55 protein expression in samples obtained from 37 pancreatic cancer patients. CD97 and CD55 were absent or only weakly expressed in the normal pancreatic tissues but strongly expressed in pancreatic cancer tissues (P<0.05), particularly in tissues with lymph node involvement, metastasis or vascular invasion (P<0.05). Notably, CD97 and CD55 were expressed consistently in pancreatic cancer tissues (r (2)=0.5422; P<0.05). In addition, CD97 and CD55 expression levels were found to significantly correlate with tumor aggressiveness (P<0.01). Multivariate analyses revealed that CD97 and CD55 expression levels were closely associated with prognosis (P<0.05). Taken together, these results indicated that CD97 and its ligand CD55 are upregulated in pancreatic cancers and are closely associated with lymph node involvement, metastasis and vascular invasion. Thus, analysis of both CD97 and CD55 expression may present potential prognostic value for pancreatic cancer.
    Oncology letters 02/2015; 9(2):793-797. · 0.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein-coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
    Pharmacological reviews. 04/2015; 67(2):338-67.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein–coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential.
    Pharmacological reviews 04/2015; 67(2):338–367. · 18.55 Impact Factor

Full-text (2 Sources)

Download
57 Downloads
Available from
Jun 10, 2014