Article

N-glycosylation of CD97 within the EGF domains is crucial for epitope accessibility in normal and malignant cells as well as CD55 ligand binding.

Institute of Anatomy, University of Leipzig, Leipzig, Germany.
International Journal of Cancer (Impact Factor: 5.01). 01/2005; 112(5):815-22. DOI: 10.1002/ijc.20483
Source: PubMed

ABSTRACT CD97 is an EGF-TM7 receptor found on various carcinomas where expression levels correlate with dedifferentiation and tumor stage, smooth muscle cells and leukocytes. CD97 acts as an adhesion molecule by binding to its cellular ligand, CD55. In this study, we demonstrate that 2 immunodominant CD97 epitopes are not equally present in the various cell types. Differences were apparent in gastrointestinal tumors and smooth muscle cells where monoclonal antibodies (mAbs) to the first epidermal growth factor (EGF) domain (CD97(EGF)) showed a more restricted staining pattern than mAbs to the stalk region (CD97(stalk)). This discrepancy was not detectable in cultured gastrointestinal tumor cell lines. In fact, the selection of the CD97 mAb influences the result of clinical studies. Thus, we clarified the reason(s) for these differences in CD97 mAb staining on various cell types. We provide evidence that epitope accessibility for CD97(EGF) mAbs depends on N-glycosylation. Immunoprecipitation of CD97 from the Colo 205 tumor cell line revealed the established 78 and 83 kDa products, while a 52 and 57 kDa band were obtained from smooth muscle cells. N-glycosidase F reduced the size of CD97 in Colo 205 cells to 52-57 kDa. Culturing these cells with tunicamycin resulted in the same decrease in size and impaired CD97(EGF) mAb binding. As shown by site-directed mutagenesis, deletion of the N-glycosylation sites located within the EGF domains efficiently disturbed CD97(EGF) mAb immunoreactivity and, importantly, binding of CD55. In conclusion, CD97(EGF) epitope accessibility for mAbs and ligand binding is influenced by cell type-specific N-glycosylation.

Download full-text

Full-text

Available from: Jörg Hamann, Jun 20, 2015
0 Followers
 · 
77 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: GPR56 is a multi-functional adhesion-class G protein-coupled receptor involved in biological systems as diverse as brain development, male gonad development, myoblast fusion, hematopoietic stem cell maintenance, tumor growth and metastasis, and immune-regulation. Ectodomain shedding of human GPR56 receptor has been demonstrated previously, however the quantitative detection of GPR56 receptor shedding has not been investigated fully due to the lack of appropriate assays. Herein, an efficient system of expression and immune-affinity purification of the recombinant soluble extracellular domain of human GPR56 (sGPR56) protein from a stably transduced human melanoma cell line was established. The identity and functionality of the recombinant human sGPR56 protein were verified by Western blotting and mass spectrometry, and ligand-binding assays, respectively. Combined with the use of two recently generated anti-GPR56 monoclonal antibodies, a sensitive sandwich ELISA assay was successfully developed for the quantitative detection of human sGPR56 molecule. We found that GPR56 receptor shedding occurred constitutively and was further increased in activated human melanoma cells expressing endogenous GPR56. In conclusion, we report herein an efficient system for the production and purification of human sGPR56 protein for the establishment of a quantitative ELISA analysis of GPR56 receptor shedding.
    Protein Expression and Purification 11/2014; 109. DOI:10.1016/j.pep.2014.11.013 · 1.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD97 as a member of the EGF-TM7 family with adhesive properties plays an important role in tumor aggressiveness by binding its cellular ligand CD55, which is a complement regulatory protein expressed by cells to protect them from bystander complement attack. Previous studies have shown that CD97 and CD55 both play important roles in tumor dedifferentiation, migration, invasiveness, and metastasis. The aim of this study was to investigate CD97 and CD55 expression in primary gallbladder carcinoma (GBC) and their prognostic significance. Immunohistochemistry was used to investigate the expression of CD97 and CD55 proteins in 138 patients with GBC. CD97 and CD55 were absent or only weakly expressed in the normal epithelium of the gallbladder but in 69.6% (96/138) and 65.2% (90/138) of GBC, respectively, remarkably at the invasive front of the tumors. In addition, CD97 and CD55 expressions were both significantly associated with high histologic grade (both P = 0.009), advanced pathologic T stage (P = 0.01 and 0.009, resp.) and clinical stage (both P = 0.009), and positive venous/lymphatic invasion (both P = 0.009). Multivariate analyses showed that CD97 (hazard ratio, 3.236; P = 0.02) and CD55 (hazard ratio, 3.209; P = 0.02) expressions and clinical stage (hazard ratio, 3.918; P = 0.01) were independent risk factor for overall survival. Our results provide convincing evidence for the first time that the expressions of CD97 and CD55 are both upregulated in human GBC. The expression levels of CD97 and CD55 in GBC were associated with the severity of the tumor. Furthermore, CD97 and CD55 expressions were independent poor prognostic factors for overall survival in patients with GBC.
    BioMed Research International 04/2012; 2012:587672. DOI:10.1155/2012/587672 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Adhesion family forms a large branch of the pharmacologically important superfamily of G protein–coupled receptors (GPCRs). As Adhesion GPCRs increasingly receive attention from a wide spectrum of biomedical fields, the Adhesion GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposes a unified nomenclature for Adhesion GPCRs. The new names have ADGR as common dominator followed by a letter and a number to denote each subfamily and subtype, respectively. The new names, with old and alternative names within parentheses, are: ADGRA1 (GPR123), ADGRA2 (GPR124), ADGRA3 (GPR125), ADGRB1 (BAI1), ADGRB2 (BAI2), ADGRB3 (BAI3), ADGRC1 (CELSR1), ADGRC2 (CELSR2), ADGRC3 (CELSR3), ADGRD1 (GPR133), ADGRD2 (GPR144), ADGRE1 (EMR1, F4/80), ADGRE2 (EMR2), ADGRE3 (EMR3), ADGRE4 (EMR4), ADGRE5 (CD97), ADGRF1 (GPR110), ADGRF2 (GPR111), ADGRF3 (GPR113), ADGRF4 (GPR115), ADGRF5 (GPR116, Ig-Hepta), ADGRG1 (GPR56), ADGRG2 (GPR64, HE6), ADGRG3 (GPR97), ADGRG4 (GPR112), ADGRG5 (GPR114), ADGRG6 (GPR126), ADGRG7 (GPR128), ADGRL1 (latrophilin-1, CIRL-1, CL1), ADGRL2 (latrophilin-2, CIRL-2, CL2), ADGRL3 (latrophilin-3, CIRL-3, CL3), ADGRL4 (ELTD1, ETL), and ADGRV1 (VLGR1, GPR98). This review covers all major biologic aspects of Adhesion GPCRs, including evolutionary origins, interaction partners, signaling, expression, physiologic functions, and therapeutic potential.
    Pharmacological reviews 04/2015; 67(2):338–367. · 18.55 Impact Factor