Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder.

Section of Human Neurogenetics and Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA.
The American Journal of Human Genetics (Impact Factor: 10.99). 12/2004; 75(5):862-72. DOI: 10.1086/425586
Source: PubMed

ABSTRACT Schizophrenia, schizoaffective disorder, and bipolar disorder are common psychiatric disorders with high heritabilities and variable phenotypes. The Disrupted in Schizophrenia 1 (DISC1) gene, on chromosome 1q42, was originally discovered and linked to schizophrenia in a Scottish kindred carrying a balanced translocation that disrupts DISC1 and DISC2. More recently, DISC1 was linked to schizophrenia, broadly defined, in the general Finnish population, through the undertransmission to affected women of a common haplotype from the region of intron 1/exon 2. We present data from a case-control study of a North American white population, confirming the underrepresentation of a common haplotype of the intron 1/exon 2 region in individuals with schizoaffective disorder. Multiple haplotypes contained within four haplotype blocks extending between exon 1 and exon 9 are associated with schizophrenia, schizoaffective disorder, and bipolar disorder. We also find overrepresentation of the exon 9 missense allele Phe607 in schizoaffective disorder. These data support the idea that these apparently distinct disorders have at least a partially convergent etiology and that variation at the DISC1 locus predisposes individuals to a variety of psychiatric disorders.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Major depressive disorder (MDD) is a common disease with high morbidity and still unsatisfying treatment response. Both MDD pathogenesis and antidepressant effect are supposed to be strongly affected by genetic polymorphisms. Among promising candidate genes, distrupted in schizophrenia 1 (DISC1), translin-associated factor X (TSNAX) and D-amino acid oxidase activator (DAOA) were suggested since their regulator role in neurodevelopment, neuroplasticity and neurotransmission, and previous evidence of cross-involvement in major psychiatric diseases. Methods The present paper investigated the role of 13 SNPs within the reported genes in MDD susceptibility through a case-control (n=320 and n=150, respectively) study and in citalopram efficacy (n=157). Measures of citalopram efficacy were response (4th week) and remission (12th week). Pharmacogenetic findings were tested in the STAR⁎D genome-wide dataset (n=1892) for replication. Results Evidence of association among rs3738401 (DISC1), rs1615409 and rs766288 (TSNAX) and MDD was found (p=0.004, p=0.0019, and p=0.008, respectively). A trend of association between remission and DISC1 rs821616 and DAOA rs778294 was detected, and confirmation was found for rs778294 by repeated-measure ANOVA (p=0.0008). In the STAR⁎D a cluster of SNPs from 20 to 40 Kbp from DISC1 findings in the original sample was associated with citalopram response, as well as rs778330 (12,325 bp from rs778294). Limitations Relatively small size of the original sample and focus on only three candidate genes. Conclusions The present study supported a role of DISC1-TSNAX variants in MDD susceptibility. On the other hand, genetic regions around DAOA rs778294 and DISC1 rs6675281-rs1000731 may influence citalopram efficacy.
    Journal of Affective Disorders 10/2014; 168:91–97. · 3.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The multifactorial nature of traumatic brain injury (TBI), especially the complex secondary tissue injury involving intertwined networks of molecular pathways that mediate cellular behavior, has confounded attempts to elucidate the pathology underlying the progression of TBI. Here, systems biology strategies are exploited to identify novel molecular mechanisms and protein indicators of brain injury. To this end, we performed a meta-analysis of four distinct high-throughput gene expression studies involving different animal models of TBI. By using canonical pathways and a large human protein-interaction network as a scaffold, we separately overlaid the gene expression data from each study to identify molecular signatures that were conserved across the different studies. At 24 hr after injury, the significantly activated molecular signatures were nonspecific to TBI, whereas the significantly suppressed molecular signatures were specific to the nervous system. In particular, we identified a suppressed subnetwork consisting of 58 highly interacting, coregulated proteins associated with synaptic function. We selected three proteins from this subnetwork, postsynaptic density protein 95, nitric oxide synthase 1, and disrupted in schizophrenia 1, and hypothesized that their abundance would be significantly reduced after TBI. In a penetrating ballistic-like brain injury rat model of severe TBI, Western blot analysis confirmed our hypothesis. In addition, our analysis recovered 12 previously identified protein biomarkers of TBI. The results suggest that systems biology may provide an efficient, high-yield approach to generate testable hypotheses that can be experimentally validated to identify novel mechanisms of action and molecular indicators of TBI. © 2014 Wiley Periodicals, Inc.
    Journal of Neuroscience Research 11/2014; · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Disrupted-In-Schizophrenia 1 is a susceptibility gene for schizophrenia and other psychiatric disorders. Developmental lead exposure can cause neurological disorders similar to hyperactivity disorder, dyslexia and schizophrenia. In the present study, we examined the impact of developmental lead exposure, administered in vitro and in vivo, on hippocampal Disrupted-In- Schizophrenia 1 expression. Our results show that in cultured hippocampal neurons, in vitro exposure to 0.1-10 µM lead, inhibited neurite growth and increased Disrupted-In-Schizophrenia 1 mRNA and protein expression dose-dependently. In addition, blood lead levels in mice were increased with increasing mouse maternal lead (0.01-1 mM) exposure. Hippocampal neurons from these mice showed a concomitant increase in Disrupted-In-Schizophrenia 1 mRNA and protein expression. Overall our findings suggest that in vivo and in vitro lead exposure increases Disrupted-In-Schizophrenia 1 expression in hippocampal neurons dose-dependently, and consequently may influence synapse formation in newborn neurons.
    Neural Regeneration Research 09/2012; 7(25):1939-45. · 0.23 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014