Mending and malignancy.

Department of Molecular Biology and Genetics and the Howard Hughes Medical Institute, at The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
Nature (Impact Factor: 42.35). 10/2004; 431(7007):402. DOI: 10.1038/431402a
Source: PubMed
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The prognosis of epithelial ovarian cancer is poor in part due to the high frequency of chemoresistance. Recent evidence points to the Toll-like receptor-4 (TLR4), and particularly its adaptor protein MyD88, as one potential mediator of this resistance. This study aims to provide further evidence that MyD88 positive cancer cells are clinically significant, stem-like and reproducibly detectable for the purposes of prognostic stratification. Expression of TLR4 and MyD88 was assessed immunohistochemically in 198 paraffin-embedded ovarian tissues and in an embryonal carcinoma model of cancer stemness. In parallel, expression of TLR4 and MyD88 mRNA and regulatory microRNAs (miR-21 and miR-146a) was assessed, as well as in a series of chemosensitive and resistant cancer cells lines. Functional analysis of the pathway was assessed in chemoresistant SKOV-3 ovarian cancer cells. TLR4 and MyD88 expression can be reproducibly assessed via immunohistochemistry using a semi-quantitative scoring system. TLR4 expression was present in all ovarian epithelium (normal and neoplastic), whereas MyD88 was restricted to neoplastic cells, independent of tumour grade and associated with reduced progression-free and overall survival, in an immunohistological specific subset of serous carcinomas, p<0.05. MiR-21 and miR-146a expression was significantly increased in MyD88 negative cancers (p<0.05), indicating their participation in regulation. Significant alterations in MyD88 mRNA expression were observed between chemosensitive and chemoresistant cells and tissue. Knockdown of TLR4 in SKOV-3 ovarian cells recovered chemosensitivity. Knockdown of MyD88 alone did not. MyD88 expression was down-regulated in differentiated embryonal carcinoma (NTera2) cells, supporting the MyD88+ cancer stem cell hypothesis. Our findings demonstrate that expression of MyD88 is associated with significantly reduced patient survival and altered microRNA levels and suggest an intact/functioning TLR4/MyD88 pathway is required for acquisition of the chemoresistant phenotype. Ex vivo manipulation of ovarian cancer stem cell (CSC) differentiation can decrease MyD88 expression, providing a potentially valuable CSC model for ovarian cancer.
    PLoS ONE 06/2014; 9(6):e100816. DOI:10.1371/journal.pone.0100816 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation has been implicated in the initiation and progression of ovarian cancer (OC), the underlying mechanisms of which are still unclear. We hypothesized that the abnormal expression of Toll-like receptors (TLRs), which were potential activators of nuclear factor-kappa B p65 (NF-κB p65), could promote inflammation and tumorigenesis in OC. In this study, we characterized the expression of TLRs in peripheral blood mononuclear cells (PBMCs) and found TLR2 and TLR6 mRNAs levels to be higher in PBMCs from OC patients than in those from benign disease (BC) or healthy normal controls (NC). Flow cytometry analysis showed that TLR1, TLR2 and TLR6 were highly expressed in monocytes from OC patients, but not in those from control subjects. Consistently, inflammatory cytokines interleukin (IL)-1β and IL-6 were up-regulated in PBMCs from OC patients upon stimulation with Pam3CSK4 (TLR1 ligand) and HKLM (TLR2 ligand), compared with unstimulated PBMCs. Stimulation of PBMCs with TLR ligands led to activation of downstream signaling molecules in TLRs (MyD88, TRAF6, TANK, NF-κB p65 and p-NF-κB p65). We also discovered that SK-OV-3-secreted factors were potent PBMCs activators, leading to the production of IL-1β, IL-6 and IL-8 through activation of TLRs and downstream signaling molecules in PBMCs. Before coculturing with SK-OV-3, pretreatment of THP-1 cells or PBMCs with monoclonal antibodies against TLR1, TLR2 or TLR6 inhibited the production of IL-1β and IL-6 and activation of MyD88, TRAF6, TANK, NF-κB p65 and p-NF-κB p65. Our results provided new evidence that TLR1, TLR2 and TLR6 signaling was linked with inflammation in OC microenvironment.
    Cancer Immunology and Immunotherapy 11/2014; DOI:10.1007/s00262-014-1632-x · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptor (TLR)4-mediated signaling has been implicated in tumor cell invasion, survival, and metastasis in a variety of cancers. This study investigated the expression and biological role of TLR4 in human breast cancer metastasis. MCF-7 and MDA-MB-231 are human breast cancer cell lines with low and high metastatic potential, respectively. Using lipopolysaccharide (LPS) to stimulate MCF-7 and MDA-MB-231 cells, expression of TLR4 mRNA and protein increased compared with that in control cells. TLR4 activation notably up-regulated expression of matrix metalloproteinase (MMP)-2, MMP-9 and vascular endothelial growth factor(VEGF) mRNA and their secretion in the supernatants of both cell lines. LPS enhanced invasion of MDA-MB-231 cells by transwell assay and MCF-7 cells by wound healing assay. LPS triggered increased expression of TLR4 downstream signaling pathway protein myeloid differentiation factor 88(MyD88) and resulted in interleukin (IL)-6 and IL-10 higher production by human breast cancer cells. Stimulation of TLR4 with LPS promoted tumorigenesis and formed metastatic lesions in liver of nude mice. Moreover, expression of TLR4 and MyD88 as well as invasiveness and migration of the cells could be blocked by TLR4 antagonist. Combined with clinicopathological parameters, TLR4 was overexpressed in human breast cancer tissue and correlated with lymph node metastasis. These findings indicated that TLR4 may participate in the progression and metastasis of human breast cancer and provide a new therapeutic target.
    PLoS ONE 10/2014; 9(10):e109980. DOI:10.1371/journal.pone.0109980 · 3.53 Impact Factor