Article

Coordinating assembly and export of complex bacterial proteins.

School of Biological Sciences, University of East Anglia, Norwich, UK.
The EMBO Journal (Impact Factor: 10.75). 11/2004; 23(20):3962-72. DOI: 10.1038/sj.emboj.7600409
Source: PubMed

ABSTRACT The Escherichia coli twin-arginine protein transport (Tat) system is a molecular machine dedicated to the translocation of fully folded substrate proteins across the energy-transducing inner membrane. Complex cofactor-containing Tat substrates, such as the model (NiFe) hydrogenase-2 and trimethylamine N-oxide reductase (TorA) systems, acquire their redox cofactors prior to export from the cell and require to be correctly assembled before transport can proceed. It is likely, therefore, that cellular mechanisms exist to prevent premature export of immature substrates. Using a combination of genetic and biochemical approaches including gene knockouts, signal peptide swapping, complementation, and site-directed mutagenesis, we highlight here this crucial 'proofreading' or 'quality control' activity in operation during assembly of complex endogenous Tat substrates. Our experiments successfully uncouple the Tat transport and cofactor-insertion activities of the TorA-specific chaperone TorD and demonstrate unequivocally that TorD recognises the TorA twin-arginine signal peptide. It is proposed that some Tat signal peptides operate in tandem with cognate binding chaperones to orchestrate the assembly and transport of complex enzymes.

Download full-text

Full-text

Available from: Alexandra Dubini, Jun 27, 2015
0 Followers
 · 
120 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphopantetheinyl transferase (PPTase) enzymes fulfil essential roles in primary and secondary metabolism in prokaryotes, archaea and eukaryotes. PPTase enzymes catalyse the essential modification of the carrier protein domain of fatty acid synthases, polyketide synthases (PKSs) and non-ribosomal peptide synthases (NRPSs). In bacteria and fungi, NRPS and PKS enzymes are often responsible for the biosynthesis of secondary metabolites with clinically relevant properties; these secondary metabolites include a variety of antimicrobial peptides. We have previously shown that in the Gram-negative bacterium, Serratia marcescens Db10, the PPTase enzyme PswP is essential for the biosynthesis of an NRPS-PKS dependent antibiotic called althiomycin. In this work we utilise bioinformatic analyses to classify PswP as belonging to the F/KES subfamily of Sfp type PPTases and to putatively identify additional NRPS substrates of PswP, in addition to the althiomycin NRPS-PKS, in S. marcescens Db10. We show that PswP is required for the production of three diffusible metabolites by this organism, each possessing antimicrobial activity against Staphylococcus aureus. Genetic analyses identify the three metabolites as althiomycin, serrawettin W2 and an as-yet-uncharacterised siderophore which may be related to enterobactin. Our results highlight the use of an individual PPTase enzyme in multiple biosynthetic pathways, each contributing to the ability of S. marcescens to inhibit competitor bacteria by the production of antimicrobial secondary metabolites.
    Microbiology 05/2014; DOI:10.1099/mic.0.078576-0 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In general, prokaryotes are considered to be single-celled organisms that lack internal membrane-bound organelles. However, many bacteria produce proteinaceous microcompartments that serve a similar purpose; that is to concentrate specific enzymatic reactions together or to shield the wider cytoplasm from toxic metabolic intermediates. In this work, a synthetic operon encoding the key structural components of a microcompartment was designed based on the genes for the Salmonella propanediol utilisation (Pdu) microcompartment. The genes chosen included pduA, -B, -J, -K, -N, -T, and -U, and each were shown to produce protein in an Escherichia coli chassis. In parallel, a set of compatible vectors designed to express non-native cargo proteins were also designed and tested. Engineered hexa-Histidine tags allowed isolation of the components of the microcompartments together with co-expressed, untagged, cargo proteins. Finally, an in vivo protease accessibility assay suggested that a PduD-GFP fusion could be protected from proteolysis when co-expressed with the synthetic microcompartment operon. This work gives encouragement that it may be possible to harness the genes encoding a non-native microcompartment for future biotechnological applications.
    Microbiology 09/2013; DOI:10.1099/mic.0.069922-0 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gram negative bacteria possess a large variety of protein transport systems, by which proteins that are synthesised in the cytosol are exported to destinations in the cell envelope or entirely secreted into the extracellular environment. The inner membrane (IM) contains three major transport systems for the translocation and insertion of signal sequence containing proteins: the Sec translocon, the YidC insertase, and the Tat system. The heterotrimeric SecYEG translocon forms a narrow channel in the membrane that serves a dual function; it allows the translocation of unfolded proteins across the pore and the integration of α-helical proteins into the IM. The YidC insertase is a multi-spanning membrane protein that cooperates with the SecYEG translocon during the integration of membrane proteins but also functions as an independent insertase. Depending upon the type of protein cargo that needs to be transported, the Signal Recognition Particle (SRP), the SRP receptor, SecA and chaperones are required to coordinate translation with transport and to target and energise the different transport systems. The Tat system consists of three membrane proteins (TatA, TatB and TatC) which in a still unknown manner accomplish the transmembrane passage of completely folded proteins and protein complexes.
    Research in Microbiology 04/2013; 164(6). DOI:10.1016/j.resmic.2013.03.016 · 2.83 Impact Factor