Article

Astrocytes and oligodendrocytes express different STOP protein isoforms

Department Química Biológica, Facultad Ciencias Químicas, Haya de la Torre S/N, 5000 Córdoba, Argentina.
Journal of Neuroscience Research (Impact Factor: 2.73). 11/2004; 78(3):329-37. DOI: 10.1002/jnr.20260
Source: PubMed

ABSTRACT Many cell types contain subpopulations of microtubules that resist depolymerizing conditions, such as exposure to cold or to the drug nocodazole. This stabilization is due mainly to polymer association with STOP proteins. In mouse, neurons express two major variants of these proteins, N-STOP and E-STOP (120 kDa and 79 kDa, respectively), whereas fibroblasts express F-STOP (42 kDa) and two minor variants of 48 and 89 kDa. N- and E-STOP induce microtubule resistance to both cold and nocodazole exposure, whereas F-STOP confers microtubule stability only to the cold. Here, we investigated the expression of STOP proteins in oligodendrocytes and astrocytes in culture. We found that STOP proteins were expressed in precursor cells, in immature and mature oligodendrocytes, and in astrocytes. We found that oligodendrocytes express a major STOP variant of 89 kDa, which we called O-STOP, and two minor variants of 42 and 48 kDa. The STOP variants expressed by oligodendrocytes induce microtubule resistance to the cold and to nocodazole. For astrocytes, we found the expression of two STOP variants of 42 and 48 kDa and a new STOP isoform of 60 kDa, which we called A-STOP. The STOP variants expressed by astrocytes induce microtubule resistance to the cold but not to nocodazole, as fibroblast variants. In conclusion, astrocytes and oligodendrocytes express different isoforms of STOP protein, which show different microtubule-stabilizing capacities.

0 Followers
 · 
85 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The deletion of microtubule-associated protein stable tubule only polypeptide (STOP) leads to neuroanatomical, biochemical and severe behavioral alterations in mice, partly alleviated by antipsychotics. Therefore, STOP knockout (KO) mice have been proposed as a model of some schizophrenia-like symptoms. Preliminary data showed decreased brain serotonin (5-HT) tissue levels in STOP KO mice. As literature data demonstrate various interactions between microtubule-associated proteins and 5-HT, we characterized some features of the serotonergic neurotransmission in STOP KO mice. In the brainstem, mutant mice displayed higher tissue 5-HT levels and in vivo synthesis rate, together with marked increases in 5-HT transporter densities and 5-HT1A autoreceptor levels and electrophysiological sensitivity, without modification of the serotonergic soma number. Conversely, in projection areas, STOP KO mice exhibited lower 5-HT levels and in vivo synthesis rate, associated with severe decreases in 5-HT transporter densities, possibly related to reduced serotonergic terminals. Mutant mice also displayed a deficit of adult hippocampal neurogenesis, probably related to both STOP deletion and 5-HT depletion. Finally, STOP KO mice exhibited a reduced anxiety- and, probably, an increased helpness-status, that could be because of the strong imbalance of the serotonin neurotransmission between somas and terminals. Altogether, these data suggested that STOP deletion elicited peculiar 5-HT disconnectivity.
    Journal of Neurochemistry 10/2010; 115(6):1579-94. DOI:10.1111/j.1471-4159.2010.07064.x · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The microtubule-associated protein tau is integral to neuronal process development and has a role in the pathogenesis of several neurodegenerative conditions. We examined possible roles for tau in cultured oligodendrocyte process formation by using antisense oligonucleotide treatment. Inhibition of tau synthesis with single oligonucleotides resulted in decreased tau protein levels and significantly shorter cellular processes. Simultaneous use of two nonoverlapping oligonucleotides caused a major reduction in tau levels and severely inhibited process outgrowth. The timing of oligonucleotide addition to oligodendrocyte cultures was important, with addition of antisense at the time of plating into culture having the most significant effect on morphology through reduction of tau expression.
    Journal of Neuroscience Research 09/2008; 86(12):2591-601. DOI:10.1002/jnr.21719 · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In mice, the deletion of the STOP protein leads to hyperdopaminergia and major behavioral disorders that are alleviated by neuroleptics, representing a potential model of schizophrenia. The reduction of the glutamatergic synaptic vesicle pool in the hippocampus could reflect a disturbance in glutamatergic neurotransmission in this model. Here we examined potential disturbances in energy metabolism and interactions between neurons and glia in 15-week-old STOP KO, wild-type, and heterozygous mice. Animals received [1-(13)C]glucose and [1,2-(13)C]acetate, the preferential substrates of neurons and astrocytes, respectively. Extracts from the whole forebrain and midbrain were analyzed by HPLC, (13)C and (1)H NMR spectroscopy. Amounts and labeling of most metabolites were unchanged. However, glutamine concentration and amount of [4,5-(13)C]glutamine derived from [1,2-(13)C]acetate significantly decreased by 17% and 18%, respectively, in STOP KO compared with wild-type mice. The amount of [4-(13)C]glutamate was decreased in STOP KO and heterozygous compared with wild-type mice. gamma-Aminobutyric acid labeling was not influenced by the genotype. Because STOP-deficient mice have a lower synaptic vesicle density, less glutamate is released to the synaptic cleft, leading to decreased stimulation of the postsynaptic glutamate receptors, reflecting increased glutamine metabolism only in the vicinity of the postsynapse of STOP KO mice.
    Journal of Neuroscience Research 11/2007; 85(15):3487-93. DOI:10.1002/jnr.21200 · 2.73 Impact Factor