Article

Characterization of a new full length TMPRSS3 isoform and identification of mutant alleles responsible for nonsyndromic recessive deafness in Newfoundland and Pakistan

Section on Human Genetics, Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD, USA.
BMC Medical Genetics (Impact Factor: 2.45). 10/2004; 5(1):24. DOI: 10.1186/1471-2350-5-24
Source: PubMed

ABSTRACT Mutant alleles of TMPRSS3 are associated with nonsyndromic recessive deafness (DFNB8/B10). TMPRSS3 encodes a predicted secreted serine protease, although the deduced amino acid sequence has no signal peptide. In this study, we searched for mutant alleles of TMPRSS3 in families from Pakistan and Newfoundland with recessive deafness co-segregating with DFNB8/B10 linked haplotypes and also more thoroughly characterized the genomic structure of TMPRSS3.
We enrolled families segregating recessive hearing loss from Pakistan and Newfoundland. Microsatellite markers flanking the TMPRSS3 locus were used for linkage analysis. DNA samples from participating individuals were sequenced for TMPRSS3. The structure of TMPRSS3 was characterized bioinformatically and experimentally by sequencing novel cDNA clones of TMPRSS3.
We identified mutations in TMPRSS3 in four Pakistani families with recessive, nonsyndromic congenital deafness. We also identified two recessive mutations, one of which is novel, of TMPRSS3 segregating in a six-generation extended family from Newfoundland. The spectrum of TMPRSS3 mutations is reviewed in the context of a genotype-phenotype correlation. Our study also revealed a longer isoform of TMPRSS3 with a hitherto unidentified exon encoding a signal peptide, which is expressed in several tissues.
Mutations of TMPRSS3 contribute to hearing loss in many communities worldwide and account for 1.8% (8 of 449) of Pakistani families segregating congenital deafness as an autosomal recessive trait. The newly identified TMPRSS3 isoform e will be helpful in the functional characterization of the full length protein.

Download full-text

Full-text

Available from: Khushnooda Ramzan, Aug 27, 2015
1 Follower
 · 
114 Views
  • Source
    • "In addition, these membrane-spanning proteins have cytoplasmic N-terminal domains, suggesting possible functions in intracellular signal transduction [Wu, 2003]. Recently, we and others have shown that mutations in TMPRSS3 were responsible for both familial and sporadic forms of nonsyndromic recessive deafness [Ben-Yosef et al., 2001; Masmoudi et al., 2001; Scott et al., 2001; Wattenhofer et al., 2002, 2005; Ahmed et al., 2004; Hutchin et al., 2005]. Genes involved in deafness can be grouped into functional categories (ion channels, transcription factors, motor molecules, extracellular matrix components, and cytoskeletal components). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Building on our discovery that mutations in the transmembrane serine protease, TMPRSS3, cause nonsyndromic deafness, we have investigated the contribution of other TMPRSS family members to the auditory function. To identify which of the 16 known TMPRSS genes had a strong likelihood of involvement in hearing function, three types of biological evidence were examined: 1) expression in inner ear tissues; 2) location in a genomic interval that contains a yet unidentified gene for deafness; and 3) evaluation of hearing status of any available Tmprss knockout mouse strains. This analysis demonstrated that, besides TMPRSS3, another TMPRSS gene was essential for hearing and, indeed, mice deficient for Hepsin (Hpn) also known as Tmprss1 exhibited profound hearing loss. In addition, TMPRSS2, TMPRSS5, and CORIN, also named TMPRSS10, showed strong likelihood of involvement based on their inner ear expression and mapping position within deafness loci PKSR7, DFNB24, and DFNB25, respectively. These four TMPRSS genes were then screened for mutations in affected members of the DFNB24 and DFNB25 deafness families, and in a cohort of 362 sporadic deaf cases. This large mutation screen revealed numerous novel sequence variations including three potential pathogenic mutations in the TMPRSS5 gene. The mutant forms of TMPRSS5 showed reduced or absent proteolytic activity. Subsequently, TMPRSS genes with evidence of involvement in deafness were further characterized, and their sites of expression were determined. Tmprss1, 3, and 5 proteins were detected in spiral ganglion neurons. Tmprss3 was also present in the organ of Corti. TMPRSS1 and 3 proteins appeared stably anchored to the endoplasmic reticulum membranes, whereas TMPRSS5 was also detected at the plasma membrane. Collectively, these results provide evidence that TMPRSS1 and TMPRSS3 play and TMPRSS5 may play important and specific roles in hearing.
    Human Mutation 01/2008; 29(1):130-41. DOI:10.1002/humu.20617 · 5.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hormonally-triggered regulatory hierarchies play a major role in organismal development. Disruption of a single member of such a hierarchy can lead to irregular development and disease. Therefore, knowledge of the members involved and the mechanisms controlling signaling through such pathways is of great importance in understanding how resulting developmental defects occur. Type II transmembrane serine proteases (TTSPs) make up a family of cell surface-associated proteases that play important roles in the development and homeostasis of a number of mammalian tissues. Aberrant expression of TTSPs is linked to several human disorders, including deafness, heart and respiratory disease and cancer. However, the mechanism by which these proteases function remains unknown. The ecdysone-responsive Stubble TTSP of Drosophila serves as a good model in which to study the functional mechanism of the TTSP family. The Stubble protease interacts with the intracellular Rho1 (RhoA) pathway to control epithelial development in imaginal discs. The Rho1 signaling pathway regulates cellular behavior via control of gene expression and actin cytoskeletal dynamics. However, the mechanism by which the Stubble protease interacts with the Rho1 pathway to control epithelial development, in particular leg imaginal disc morphogenesis, has yet to be elucidated. The Stubble protein consists of several conserved domains. One approach to a better understanding of the mechanism of action of Stubble in regulating Rho1 signaling is to define which of the conserved domains within the protease are required for proper function. Sequence analysis of twelve recessive Stubble mutant alleles has revealed that the proteolytic domain is essential for proper function. Alleles containing mutations which disrupt regions of the protease domain necessary for protease activation or substrate binding, as well as those with deletions or truncations that remove some portion of the proteolytic domain, result in defective epithelial development in vivo. In contrast, mutations in other regions of the Stubble protein, including the disulfide-knotted and cytoplasmic domains, were not observed. Another important step for defining the connection between Stubble and Rho1 signaling is to identify a Stubble target that acts as an upstream regulator of the Rho1 pathway. We performed a genetic screen in which 97 of the 147 Drosophila non-olfactory and non-gustatory G-protein-coupled receptors (GPCRs), a family of proteins that has been shown to be protease-activated and to activate Rho1 signaling, were tested for interactions with a mutant allele of Stubble. We found 4 genomic regions uncovering a total of 7 GPCRs that interact genetically when in heterozygous combination with a Stubble mutant. Further analysis of these genes is necessary to determine if any of these GPCRs is targeted by Stubble during activation of the Rho1 pathway.
  • Source
Show more