Article

Characterization and applications of CataCleave probe in real-time detection assays

Seoul National University, Sŏul, Seoul, South Korea
Analytical Biochemistry (Impact Factor: 2.31). 11/2004; 333(2):246-55. DOI: 10.1016/j.ab.2004.05.037
Source: PubMed

ABSTRACT Cycling probe technology (CPT), which utilizes a chimeric DNA-RNA-DNA probe and RNase H, is a rapid, isothermal probe amplification system for the detection of target DNA. Upon hybridization of the probe to its target DNA, RNase H cleaves the RNA portion of the DNA/RNA hybrid. Utilizing CPT, we designed a catalytically cleavable fluorescence probe (CataCleave probe) containing two internal fluorophores. Fluorescence intensity of the probe itself was weak due to Förster resonance energy transfer. Cleavage of the probe by RNase H in the presence of its target DNA caused enhancement of donor fluorescence, but this was not observed with nonspecific target DNA. Further, RNase H reactions with CataCleave probe exhibit a catalytic dose-dependent response to target DNA. This confirms the capability for the direct detection of specific target DNA through a signal amplification process. Moreover, CataCleave probe is also ideal for detecting DNA amplification processes, such as polymerase chain reaction (PCR) and isothermal rolling circle amplification (RCA). In fact, we observed signal enhancement proportional to the amount of RCA product formed. We were also able to monitor real-time PCR by measuring enhancement of donor fluorescence. Hence, CataCleave probe is useful for real-time monitoring of both isothermal and temperature-cycling nucleic acid amplification methods.

1 Follower
 · 
237 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Accurate measurement of BCR–ABL1 fusion transcripts is critical for therapeutic stratification in patients with chronic myelogenous leukemia (CML). Previous studies have reported the variable performance of the existing quantitative reverse transcription polymerase chain reaction (RQ-PCR). Here, we developed a one-step multiplex RQ-PCR method based on the catalytically cleavable fluorescence probe technology for quantification of BCR–ABL1 transcripts. Methods Performance was evaluated with respect to the limit of detection (LoD), linearity, precision, and comparison on the VIIA7 Real-Time PCR system. Multiplex RQ-PCR was performed by the one-step and one-well reaction without the hands-on time. Results Our assay showed a LoD of 1.5 pg with linearity in the range of more than 4 logs of dilution. Intraassay, interassay, and total percent CVs at the concentration of 150 ng were 12.8%, 22.6%, and 28.0%, respectively. The assay correlated well with Asuragen's BCR/ABL1 Quant™ kit over a 6 log concentration range (r = 0.9967). Conclusion Our assay demonstrated comparable performance characteristics in comparison with previous RQ-PCR based on the TaqMan probe technology. We conclude that our method could be a reliable tool in the clinical setting.
    Clinica chimica acta; international journal of clinical chemistry 01/2014; 428:72–76. DOI:10.1016/j.cca.2013.10.016 · 2.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An isothermal amplification method was developed for the sensitive detection of the H5N1 influenza virus. The padlock probe specifically bound to the H5N1 target and circularized with T4 DNA ligase enzyme. Then this circular probe was amplified by hyperbranched rolling circle amplification (HRCA) using Phi29 DNA polymerase. The fluorescence intensity was recorded at different intervals by intercalation of SYBR green molecules into the double-stranded product of the HRCA reaction. At an optimum time of 88 min, a calibration plot with fine linearity was obtained. Using HRCA based on a padlock probe and Phi29 DNA polymerase, high selectivity and sensitivity were achieved. The biosensor response was linear toward H5N1 in the concentration range from 10 fM to 0.25 pM, with a detection limit of 9 fM at a signal/noise ratio of 3. By replacing the heat shock with pH shock, not only was the procedure for detection of H5N1 influenza simplified, but also the DNA molecules were protected from possible breaking at high temperature.
    The Analyst 01/2015; 140(5). DOI:10.1039/c4an01954g · 3.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fast, reliable and sensitive methods for nucleic acid detection are of growing practical interest with respect to molecular diagnostics of cancer, infectious and genetic diseases. Currently, PCR-based and other target amplification strategies are most extensively used in practice. At the same time, such assays have limitations that can be overcome by alternative approaches. There is a recent explosion in the design of methods that amplify the signal produced by a nucleic acid target, without changing its copy number. This review aims at systematization and critical analysis of the enzyme-assisted target recycling (EATR) signal amplification technique. The approach uses nucleases to recognize and cleave the probe-target complex. Cleavage reactions produce a detectable signal. The advantages of such techniques are potentially low sensitivity to contamination and lack of the requirement of a thermal cycler. Nucleases used for EATR include sequence-dependent restriction or nicking endonucleases or sequence independent exonuclease III, lambda exonuclease, RNase H, RNase HII, AP endonuclease, duplex-specific nuclease, DNase I, or T7 exonuclease. EATR-based assays are potentially useful for point-of-care diagnostics, single nucleotide polymorphisms genotyping and microRNA analysis. Specificity, limit of detection and the potential impact of EATR strategies on molecular diagnostics are discussed.
    Chemical Society Reviews 06/2014; 43(17). DOI:10.1039/c4cs00083h · 30.43 Impact Factor