Artemis is a phosphorylation target of ATM and ATR and is involved in the G2/M DNA damage checkpoint response.

Department of Molecular Genetics, The University of Texas M D Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
Molecular and Cellular Biology (Impact Factor: 5.04). 11/2004; 24(20):9207-20. DOI: 10.1128/MCB.24.20.9207-9220.2004
Source: PubMed

ABSTRACT Mutations in Artemis in both humans and mice result in severe combined immunodeficiency due to a defect in V(D)J recombination. In addition, Artemis mutants are radiosensitive and chromosomally unstable, which has been attributed to a defect in nonhomologous end joining (NHEJ). We show here, however, that Artemis-depleted cell extracts are not defective in NHEJ and that Artemis-deficient cells have normal repair kinetics of double-strand breaks after exposure to ionizing radiation (IR). Artemis is shown, however, to interact with known cell cycle checkpoint proteins and to be a phosphorylation target of the checkpoint kinase ATM or ATR after exposure of cells to IR or UV irradiation, respectively. Consistent with these findings, our results also show that Artemis is required for the maintenance of a normal DNA damage-induced G2/M cell cycle arrest. Artemis does not appear, however, to act either upstream or downstream of checkpoint kinase Chk1 or Chk2. These results define Artemis as having a checkpoint function and suggest that the radiosensitivity and chromosomal instability of Artemis-deficient cells may be due to defects in cell cycle responses after DNA damage.


Available from: Michael D Story, May 25, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-homologous end joining (NHEJ) repairs DNA double-strand breaks generated by DNA damage and also those occurring in V(D)J recombination in immunoglobulin and T cell receptor production in the immune system. In NHEJ DNA-PKcs assembles with Ku heterodimer on the DNA ends at double-strand breaks, in order to bring the broken ends together and to assemble other proteins, including DNA ligase IV (LigIV), required for DNA repair. Here we focus on structural aspects of the interactions of LigIV with XRCC4, XLF, Artemis and DNA involved in the bridging and end-joining steps of NHEJ. We begin with a discussion of the role of XLF, which interacts with Ku and forms a hetero-filament with XRCC4; this likely forms a scaffold bridging the DNA ends. We then review the well-defined interaction of XRCC4 with LigIV, and discuss the possibility of this complex interrupting the filament formation, so positioning the ligase at the correct positions close to the broken ends. We also describe the interactions of LigIV with Artemis, the nuclease that prepares the ends for ligation and also interacts with DNA-PK. Lastly we review the likely affects of Mendelian mutations on these multiprotein assemblies and their impacts on the form of inherited disease.
    DNA repair 05/2014; 17. DOI:10.1016/j.dnarep.2014.02.010 · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Helicobacter pylori (H. pylori) induced DNA damage which may be related to gastric cancer development. The DNA damage response coordinates DNA repair, cell-cycle transition, and apoptosis through activation of DNA damage response molecules. The damaged DNA is repaired through non-homologous end joining (NHEJ) or homologous recombination (HR). In the present study, we investigated the changes of HR DNA repair proteins (ataxia-telangiectasia-mutated; ATM, ATM and Rad3-related; ATR), NHEJ repair proteins (Ku70/80), cell cycle regulators (Chk1, Chk2), and apoptosis marker (p53/p-p53) were determined in H. pylori-infected Mongolian gerbils. In addition, the effect of an antioxidant N-acetylcysteine (NAC) on H. pylori-induced DNA damage response was determined to assess the involvement of oxidative stress on DNA damage of the animals infected with H. pylori. One week after intragastric inoculation with H. pylori, Mongolian gerbils were fed with basal diet with or without 3% NAC for 6 weeks. After 6 week, the expression levels of DNA repair proteins (Ku70/80, ATM, ATR), cell cycle regulators (Chk1, Chk2) and apoptosis marker (p-p53/p53) were increased in gastric mucosa of Mongolian gerbils, which was suppressed by NAC treatment. In conclusion, oxidative stress mediates H. pylori-induced DNA damage response including NHEJ and HR repairing processes, cell cycle arrest and apoptosis in gastric mucosa of Mongolian gerbils.
    09/2013; 18(3):271-5. DOI:10.15430/JCP.2013.18.3.271
  • Source