Article

Repulsion and attraction of axons by semaphorin3D are mediated by different neuropilins in vivo.

Department of Zoology and Anatomy, University of Wisconsin, Madison, Wisconsin 53706, USA.
Journal of Neuroscience (Impact Factor: 6.75). 10/2004; 24(39):8428-35. DOI: 10.1523/JNEUROSCI.2349-04.2004
Source: PubMed

ABSTRACT Class 3 semaphorins are known to repel and/or sometimes attract axons; however, their role in guiding developing axons in the CNS in vivo is still essentially unknown. We investigated the role of Semaphorin3D (Sema3D) in the formation of the early axon pathways in the zebrafish CNS. Morpholino knock-down shows that Sema3D is essential for the correct formation of two early axon pathways. Sema3D appears to guide axons of the nucleus of the medial longitudinal fasciculus (nucMLF) by repulsion and modulation of fasciculation. In contrast, Sema3D appears to be attractive to telencephalic neurons that form the anterior commissure (AC). Knock-down of Neuropilin-1A (Npn-1A) phenocopied the effects of Sema3D knock-down on the nucMLF axons, and knock-down of either Npn-1A or Npn-2B phenocopied the defects of the AC. Furthermore, simultaneous partial knock-down experiments demonstrated genetic interactions among Sema3D, Npn-1A, and Npn-2B. Together, these data support the hypothesis that Sema3D may act as a repellent through receptors containing Npn-1A and as an attractant via receptors containing Npn-1A and Npn-2B.

0 Bookmarks
 · 
80 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Class 3 semaphorins were initially described as axonal growth cone guidance molecules that signal through plexin and neuropilin coreceptors, and since have been established to be regulators of vascular development. Semaphorin 3e (Sema3e) was previously shown to repel endothelial cells and is the only class 3 semaphorin known to be capable of signaling via a plexin receptor without a neuropilin coreceptor. Sema3e signals through plexin D1 (Plxnd1) to regulate vascular patterning by modulating the cytoskeleton and focal adhesion structures. Recently, we have shown that semaphorin 3d (Sema3d) mediates endothelial cell repulsion and pulmonary vein patterning during embryogenesis. Here we show that Sema3d and Sema3e similarly affect human umbilical vein endothelial cells (HUVECs) but through distinct molecular signaling pathways. Time-lapse imaging studies show that both Sema3d and Sema3e can inhibit cell motility and migration, and tube formation assays indicate that both can impede tubulogenesis. Endothelial cells incubated with either Sema3d or Sema3e demonstrate a loss of actin stress fibers and focal adhesions. However, the addition of neuropilin 1 (Nrp1) blocking antibody or siRNA knockdown of Nrp1 inhibits Sema3d-mediated but not Sema3e-mediated cytoskeletal reorganization, and siRNA knockdown of Nrp1 abrogates Sema3d but not Sema3e-mediated inhibition of tubulogenesis. On the other hand, endothelial cells deficient in Plxnd1 are resistant to endothelial repulsion mediated by Sema3e, but not Sema3d. Unlike Sema3e, Sema3d incubation results in phosphorylation of Akt in HUVECs, and inhibition of the Phosphoinositide 3-kinase (PI3K)/Akt pathway blocks the endothelial guidance and cytoskeletal reorganization functions of Sema3d but not Sema3e.
    Journal of Biological Chemistry 05/2014; · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in MECP2 are responsible for the majority of Rett syndrome cases. MECP2 is a regulator of transcription, and has two isoforms, MECP2_e1 and MECP2_e2. There is accumulating evidence that MECP2_e1 is the etiologically relevant variant for Rett. In this study we aim to detect genes that are differentially transcribed in neuronal cells over-expressing either of these two MECP2 isoforms. The human neuroblastoma cell line SK-N-SH was stably infected by lentiviral vectors over-expressing MECP2_e1, MECP2_e2, or eGFP, and were then differentiated into neurons. The same lentiviral constructs were also used to infect mouse Mecp2 knockout (Mecp2tm1.1Bird) fibroblasts. RNA from these cells was used for microarray gene expression analysis. For the human neuronal cells, ∼800 genes showed >three-fold change in expression level with the MECP2_e1 construct, and ∼230 with MECP2_e2 (unpaired t-test, uncorrected p value <0.05). We used quantitative RT-PCR to verify microarray results for 41 of these genes. We found significant up-regulation of several genes resulting from over-expression of MECP2_e1 including SRPX2, NAV3, NPY1R, SYN3, and SEMA3D. DOCK8 was shown via microarray and qRT-PCR to be upregulated in both SK-N-SH cells and mouse fibroblasts. Both isoforms up-regulated GABRA2, KCNA1, FOXG1 and FOXP2. Down-regulation of expression in the presence of MECP2_e1 was seen with UNC5C and RPH3A. Understanding the biology of these differentially transcribed genes and their role in neurodevelopment may help us to understand the relative functions of the two MECP2 isoforms, and ultimately develop a better understanding of RTT etiology and determine the clinical relevance of isoform-specific mutations.
    PLoS ONE 04/2014; 9(4):e91742. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in Optineurin have been associated with ALS, glaucoma, and Paget's disease of bone in humans, but little is known about how these mutations contribute to disease. Most of the cellular consequences of Optineurin loss have come from in vitro studies, and it remains unclear whether these same defects would be seen in vivo. To answer this question, we assessed the cellular consequences of Optineurin loss in zebrafish embryos to determine if they showed the same defects as have been described in the in vitro studies. We found that loss of Optineurin resulted in increased cell death, as well as subtle cell morphology, cell migration and vesicle trafficking defects. However, unlike experiments on cells in culture, we found no indication that the Golgi apparatus was disrupted or that NF-κB target genes were upregulated. Therefore, we conclude that in vivo loss of Optineurin shows some, but not all, of the defects seen in in vitro work.
    PLoS ONE 10/2014; 9(10):e109922. · 3.53 Impact Factor

Preview

Download
0 Downloads
Available from