Mutations in the DNA-binding domain of the transcription factor Bright act as dominant negative proteins and interfere with immunoglobulin transactivation.

Oklahoma Medical Research Foundation, 825 N. E. 13 Street, Oklahoma City, Oklahoma 73104, USA.
Journal of Biological Chemistry (Impact Factor: 4.65). 01/2005; 279(50):52465-72. DOI: 10.1074/jbc.M403028200
Source: PubMed

ABSTRACT Bright, for B cell regulator of immunoglobulin heavy chain transcription, binds A+T-rich sequences in the intronic enhancer regions of the murine heavy chain locus and 5'-flanking sequences of some variable heavy chain promoters. Most resting B cells do not express Bright; however, it is induced after stimulation with antigen or polyclonal mitogens. Bright activation results in up-regulation of mu transcription; however, it is not clear whether Bright function is critical for normal B cell development. To begin to address Bright function during B cell development, seven mutated forms of Bright were produced. Five of the seven mutants revealed little or no DNA binding activity. Furthermore, because Bright binds DNA as a dimer, two of the mutants formed complexes with wild type Bright and acted in a dominant negative fashion. Dominant negative Bright prevented the up-regulation of mu transcription in transfected Chinese hamster ovary cells transfected with wild type Bright. These data identify regions within Bright that are required for the DNA binding activity of Bright and for its function as a transcription factor.

  • [Show abstract] [Hide abstract]
    ABSTRACT: ARID3a/Bright is a DNA-binding protein that was originally discovered for its ability to increase immunoglobulin transcription in antigen-activated B cells. It interacts with DNA as a dimer through its ARID, or A/T-rich interacting domain. In association with other proteins, ARID3a increased transcription of the immunoglobulin heavy chain and led to improved chromatin accessibility of the heavy chain enhancer. Constitutive expression of ARID3a in B lineage cells resulted in autoantibody production, suggesting its regulation is important. Abnormal ARID3a expression has also been associated with increased proliferative capacity and malignancy. Roles for ARID3a in addition to interactions with the immunoglobulin locus were suggested by transgenic and knockout mouse models. Over-expression of ARID3a resulted in skewing of mature B cell subsets and altered gene expression patterns of follicular B cells, whereas loss of function resulted in loss of B1 lineage B cells and defects in hematopoiesis. More recent studies showed that loss of ARID3a in adult somatic cells promoted developmental plasticity, alterations in gene expression patterns, and lineage fate decisions. Together, these data suggest new regulatory roles for ARID3a. The genes influenced by ARID3a are likely to play pivotal roles in lineage decisions, highlighting the importance of this understudied transcription factor.
    Frontiers in Immunology 01/2014; 5:113.
  • [Show abstract] [Hide abstract]
    ABSTRACT: SymRK-interacting protein 1 (SIP1) has previously been shown to interact with the symbiosis receptor kinase, SymRK, in Lotus japonicus. A longer variant of the SIP1 transcript, SIP1L, was isolated and characterized. SIP1L contains an additional 17 amino acids that make its C-terminus a complete heat shock protein 20 (Hsp20)-like domain. In contrast to SIP1S, the longer splicing variant SIP1L could not interact with SymRK. Both SIP1L and SIP1S transcripts could be detected in developing nodules and other plant tissues, although the former was always more abundant than the latter. SIP1L and SIP1S formed heteromeric protein complexes, which were co-localized in the plasma membrane, cytoplasm and nuclei. Expression of SIP1-RNAi in transgenic hairy roots resulted in impairment in the nodule and arbuscular mycorrhizal development, suggesting an important role of SIP1 in the common symbiosis pathway. Overexpression of either SIP1L or SIP1S increased the number of nodules formed on transgenic hairy roots, indicating a positive role of SIP1 in nodulation. The SIP1S-like transcript was not detected in other higher plants tested, and the SIP1L-like proteins of these plants were capable of interacting with the SymRK orthologs. It is proposed that the loss of the ability of SIP1L to interact with SymRK in Lotus is compensated by the expression of a shorter splicing variant, SIP1S, which binds SymRK and may play a role in relaying the symbiosis signals to downstream cellular events.
    Plant Molecular Biology 03/2013; · 3.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We show here that singular loss of the Bright/Arid3A transcription factor leads to reprograming of mouse embryonic fibroblasts (MEFs) and enhancement of standard four-factor (4F) reprogramming. Bright-deficient MEFs bypass senescence and, under standard embryonic stem cell (ESC) culture conditions, spontaneously form clones that in vitro express pluripotency markers, differentiate to all germ lineages, and in vivo form teratomas and chimeric mice. We demonstrate that BRIGHT binds directly to the promoter/enhancer regions of Oct4, Sox2, and Nanog to contribute to their repression in both MEFs and ESCs. Thus, elimination of the BRIGHT barrier may provide an approach for somatic cell reprogramming.
    Stem cell reports. 01/2014; 2(1):26-35.