TNP-470, an angiogenesis inhibitor, suppresses the progression of peritoneal fibrosis in mouse experimental model

Department of Histology and Cell Biology, Nagasaki University, Nagasaki, Nagasaki, Japan
Kidney International (Impact Factor: 8.52). 11/2004; 66(4):1677-85. DOI: 10.1111/j.1523-1755.2004.00935.x
Source: PubMed

ABSTRACT In patients on long-term peritoneal dialysis (PD), angiogenesis and vasculopathy are observed in the peritoneum, and the degree of vascularization correlates with the area of fibrotic tissue, suggesting the involvement of angiogenesis in the progression of peritoneal fibrosis. The aim of the present study was to evaluate the effect of TNP-470, an anti-angiogenic compound, on the development of peritoneal fibrosis induced by chlorhexidine gluconate (CG).
Peritoneal fibrosis was induced by injection of CG into peritoneal cavity of Institute for Cancer Research (ICR) mice. TNP-470 was injected subcutaneously with CG. Mice were sacrificed, and peritoneal tissues were dissected out at days eight and 16 after CG and TNP-470 injection. The expression patterns of CD31 (as a marker of endothelial cells), vascular endothelial cell growth factor (VEGF), alpha-smooth muscle actin (as a marker of myofibroblasts), heat shock protein 47 (HSP47), type III collagen, F4/80 (as a marker of mice macrophages), proliferating cell nuclear antigen (PCNA), and cyclin-dependent kinase 2 (Cdk2) were examined by immunohistochemistry.
CG-injected mice showed thickening of the submesothelial zone and increased number of vessels, myofibroblasts, and infiltrating macrophages. The expression levels of VEGF, type III collagen, and HSP47 were increased, and a large number of PCNA-positive cells and Cdk2-expressing cells were observed in the thickened submesothelial area. Treatment with TNP-470 suppressed the submesothelial zone thickening and reduced collagen III expression as well as angiogenesis. TNP-470 also decreased the number of VEGF-expressing cells, myofibroblasts, macrophages, PCNA-positive cells, and Cdk2-expressing cells.
Our results indicate the involvement of angiogenesis in the progression of peritoneal fibrosis, and suggest that TNP-470 may be potentially useful for the prevention of peritoneal fibrosis through inhibition of angiogenesis and suppression of myofibroblast proliferation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study is to design biodegradable hydrogels for the controlled release of low-molecular-weight heparin (LMWH) and evaluate the biological activity. Gelatin was cationized by chemically introducing ethylene diamine into the carboxyl groups in different conditions to obtain cationized gelatins. The cationized gelatin was mixed with the LMWH in aqueous solution to form the complex. Gelatin, together with the complex of LMWH and cationized gelatin, was dehydrothermally cross-linked for different time periods to prepare the gelatin hydrogel-incorporating complex. The hydrogel-incorporating complex was neither degraded in phosphate-buffered saline solution (PBS) at 37 °C nor did it release the LMWH complex. When placed in PBS containing collagenase, the hydrogel was enzymatically degraded to release the LMWH complex. The time profile of hydrogel degradation and the LMWH release depended on the condition of hydrogel cross-linking. The longer the cross-linking time period, the slower the hydrogel degradation and the subsequent LMWH release. The half-life period of LMWH release was in good correspondence with that of hydrogel degradation. It is possible that the LMWH was released as the result of hydrogel degradation. When applied to the mouse model of abdominal membrane fibrosis, the hydrogel system of LMWH release showed a promising anti-fibrotic effect.
    Acta biomaterialia 10/2011; 8(2):646-52. DOI:10.1016/j.actbio.2011.10.025 · 5.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Sustained peritoneal inflammation, secondary to peritoneal dialysis (PD) treatment, induces a reparative process. This process is carried out by submesothelial fibroblasts and is responsible for many ofthe peritoneal structural anomalies observed during PD. Peritoneal fibrosis, mesothelial loss, vasculopathy and angiogenesis are common ,consequences of PD
  • [Show abstract] [Hide abstract]
    ABSTRACT: The concept of peritoneal dialysis as a therapeutic modality for end stage renal disease was first demonstrated by Putnam in 1923 in a canine animal model [1]. Over the past 30 years, as peritoneal dialysis has been increasingly used and modified as a therapy for renal failure, animal models have been used to understand the physiology of the peritoneum membrane, and to test new therapeutic interventions to improve the outcomes of patients treated with peritoneal dialysis.


1 Download
Available from