Article

Multisensory cortical processing of object shape and its relation to mental imagery.

Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
Cognitive Affective & Behavioral Neuroscience (Impact Factor: 3.21). 07/2004; 4(2):251-9. DOI: 10.3758/CABN.4.2.251
Source: PubMed

ABSTRACT Here, we used functional magnetic resonance imaging to investigate the multisensory processing of object shape in the human cerebral cortex and explored the role of mental imagery in such processing. Regions active bilaterally during both visual and haptic shape perception, relative to texture perception in the respective modality, included parts of the superior parietal gyrus, the anterior intraparietal sulcus, and the lateral occipital complex. Of these bimodal regions, the lateral occipital complexes preferred visual over haptic stimuli, whereas the parietal areas preferred haptic over visual stimuli. Whereas most subjects reported little haptic imagery during visual shape perception, experiences of visual imagery during haptic shape perception were common. Across subjects, ratings of the vividness of visual imagery strongly predicted the amount of haptic shape-selective activity in the right, but not in the left, lateral occipital complex. Thus, visual imagery appears to contribute to activation of some, but not all, visual cortical areas during haptic perception.

0 Followers
 · 
100 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS). Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7), extrastriate cortex (BA18, BA19), and striate cortex (BA17) activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7), extrastriate cortex (BA18, 19), and striate cortex (BA17), as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth.
    PLoS ONE 10/2014; 9(10):e108685. DOI:10.1371/journal.pone.0108685 · 3.53 Impact Factor
  • Aktuelle Neurologie 10/2005; 32(S 4). DOI:10.1055/s-2005-919579 · 0.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Visual clues as to the physical substance of manufactured objects can be misleading. For example, a plastic ring can appear to be made of gold. However, we can avoid misidentifying an object’s substance by comparing visual and tactile information. As compared to the spatial properties of an object (e.g., orientation), however, little information regarding physical object properties (material properties) is shared between vision and touch. How can such different kinds of information be compared in the brain? One possibility is that the visuo-tactile comparison of material information is mediated by associations that are previously learned between the two modalities. Previous studies suggest that a cortical network involving the medial temporal lobe and precuneus plays a critical role in the retrieval of information from long-term memory. Here, we used functional magnetic resonance imaging (fMRI) to test whether these brain regions are involved in the visuo-tactile comparison of material properties. The stimuli consisted of surfaces in which an oriented plastic bar was placed on a background texture. Twenty-two healthy participants determined whether the orientations of visually- and tactually-presented bar stimuli were congruent in the orientation conditions, and whether visually- and tactually-presented background textures were congruent in the texture conditions. The texture conditions revealed greater activation of the fusiform gyrus, medial temporal lobe and lateral prefrontal cortex compared with the orientation conditions. In the texture conditions, the precuneus showed greater response to incongruent stimuli than to congruent stimuli. This incongruency effect was greater for the texture conditions than for the orientation conditions. These results suggest that the precuneus is involved in detecting incongruency between tactile and visual texture information in concert with the medial temporal lobe, which is tightly linked with long-term memory
    Neuropsychologia 10/2014; 64. DOI:10.1016/j.neuropsychologia.2014.09.028 · 3.45 Impact Factor

Full-text (2 Sources)

Download
40 Downloads
Available from
May 20, 2014