Article

Retracted: In vivo potentiation of human oestrogen receptor α by Cdk7-mediated phosphorylation

The Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan.
Genes to Cells (Impact Factor: 2.86). 11/2004; 9(10):983-92. DOI: 10.1111/j.1365-2443.2004.00777.x
Source: PubMed

ABSTRACT Phosphorylation of the Ser(118) residue in the N-terminal A/B domain of the human oestrogen receptor alpha (hERalpha) by mitogen-activated protein kinase (MAPK), stimulated via growth factor signalling pathways, is known to potentiate ERalpha ligand-induced transactivation function. Besides MAPK, cyclin dependent kinase 7 (Cdk7) in the TFIIH complex has also been found to potentiate hERalpha transactivation in vitro through Ser(118) phosphorylation. To investigate an impact of Cdk7 on hERalpha transactivation in vivo, we assessed activity of hERalpha in a wild-type and cdk7 inactive mutant Drosophila that ectopically expressed hERalpha in the eye disc. Ectopic expression of the wild-type or mutant receptors, together with a green fluorescent protein (GFP) reporter gene, allowed us to demonstrate that hERalpha expressed in the fly tissues was transcriptionally functional and adequately responded to hERalpha ligands in the patterns similar to those observed in mammalian cells. Replacement of Ser(118) with alanine in hERalpha (S118A mutant) significantly reduced the ligand-induced hERalpha transactivation function. Importantly, while in cdk7 inactive mutant Drosophila the wild-type hERalpha exhibited reduced response to the ligand; levels of transactivation by the hERalpha S118A mutant were not affected in these inactive cdk7 mutant flies. Furthermore, phosphorylation of hERalpha at Ser(118) has been observed in vitro by both human and Drosophila Cdk7. Our findings demonstrate that Cdk7 is involved in regulation of the ligand-induced transactivation function of hERalphain vivo via Ser(118) phosphorylation.

0 Followers
 · 
188 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oestrogen receptor-alpha (ERalpha) is an important prognostic marker in breast cancer and endocrine therapies are designed to inhibit or prevent ERalpha activity. In vitro studies have indicated that phosphorylation of ERalpha, in particular on serine 118 (S118), can result in activation in a ligand-independent manner, thereby potentially contributing to resistance to endocrine agents, such as tamoxifen and aromatase inhibitors. Here we report the immunohistochemistry (IHC) of S118 phosphorylation in 301 primary breast tumour biopsies. Surprisingly, this analysis shows that S118 phosphorylation is higher in more differentiated tumours, suggesting that phosphorylation at this site is associated with a good prognosis in patients not previously treated with endocrine agents. However, we also report that S118 phosphorylation was elevated in tumour biopsies taken from patients who had relapsed following tamoxifen treatment, when compared to pre-treatment biopsies. Taken together, these data are consistent with the view that S118 phosphorylation is a feature of normal ERalpha function and that increases in levels of phosphorylation at this site may play a key role in the emergence of endocrine resistance in breast cancer.
    Endocrine Related Cancer 10/2006; 13(3):851-61. DOI:10.1677/erc.1.01123 · 4.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Estrogen receptor (ER) is a hormone-inducible transcription factor as a member of the nuclear receptor gene superfamily. Unliganded ER is transcriptionally silent and capable of DNA binding; however, it is unable to suppress the basal activity of the target gene promoters, unlike non-steroid hormone receptors that associate with corepressors in the absence of their cognate ligands. To study the molecular basis of how unliganded human ERalpha is maintained silent in gene regulation upon the target gene promoters, we biochemically searched interactants for hERalpha, and identified heat shock protein 70 (Hsc70). Hsc70 appeared to associate with the N-terminal hormone binding E domain, that also turned out a transcriptionally repressive domain. Competitive association of Hsc70 with a best known coactivator p300 was observed. Thus, these findings suggest that Hsc70 associates with unliganded hERalpha, and thereby deters hERalpha from recruiting transcriptional coregulators, presumably as a component of chaperone complexes.
    Genes to Cells 01/2006; 10(12):1095-102. DOI:10.1111/j.1365-2443.2005.00904.x · 2.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The multiple physiological functions of steroid hormones have been known for many years. The cloning of the steroid receptors in the mid-1980s led to the concept of ligand-activated transcription factors and to the identification of specific DNA response elements in the regulatory regions of target genes. The next main development was the identification of cofactors with activating or repressing functions, of which several act by modifying histones and locally affecting the chromatin structure. Work from several groups shows that the steroid receptors themselves can also be modified at various positions. Besides the long-known phosphorylation at tyrosines and serine/threonine residues, other covalent additions such as acetylation, ubiquitylation and sumoylation have been evidenced for steroid receptors in recent years. These modifications affect receptor stability and activity, and provide potential mechanisms for cell- or gene-specific regulation. A better understanding of the impact of these post-translational modifications (PTMs) on steroid receptor function should help in the identification of novel ligands with improved clinical profiles.
    Biomedecine [?] Pharmacotherapy 12/2006; 60(9):520-8. DOI:10.1016/j.biopha.2006.07.082 · 2.11 Impact Factor

Preview

Download
5 Downloads