Article

Adhesion-mediated squamous cell carcinoma survival through ligand-independent activation of epidermal growth factor receptor

Department of Stomatology, School of Medicine, University of California at San Francisco, Box 0512, Room HSW-604, San Francisco, CA 94143-0512, USA.
American Journal Of Pathology (Impact Factor: 4.6). 11/2004; 165(4):1315-29. DOI: 10.1016/S0002-9440(10)63390-1
Source: PubMed

ABSTRACT The survival and growth of squamous epithelial cells require signals generated by integrin-matrix interactions. After conversion to squamous cell carcinoma, the cells remain sensitive to detachment-induced anoikis, yet in tumor cell aggregates, which are matrix-deficient, these cells are capable of suprabasal survival and proliferation. Their survival is enhanced through a process we call synoikis, whereby junctional adhesions between neighboring cells generate specific downstream survival signals. Here we show that in squamous cell carcinoma cells, E-cadherin-mediated cell-cell contacts specifically induce activation of epidermal growth factor receptor (EGFR). EGFR activation in turn triggers the ERK/MAPK signaling module, leading to elevation of anti-apoptotic Bcl-2. After intercellular adhesion, formation of adherens junctions triggers the formation of E-cadherin-EGFR complexes, correlating with EGFR transactivation. Analysis of the process with a dominant-negative EGFR mutant indicated that activation of EGFR is ligand-independent. Our data implicate cell-cell adhesion-induced activation of EGFR as a cooperative mechanism that generates compensatory survival signaling, protecting malignant cells from detachment-induced death.

0 Followers
 · 
93 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vascular tissue, T-cadherin (T-cad) is up-regulated in vivo under disease conditions associated with oxidative stress and concomitant cell migration, proliferation and apoptosis/survival. Using cultures of human umbilical vein endothelial cells (HUVEC), we examined whether there is a functional relationship between oxidative stress, T-cad expression, and cell survival status. Culture of HUVEC under conditions of oxidative stress (e.g., serum deprivation, inclusion of H2O2) resulted in increased T-cad expression. Oxidative stress-induced increases in T-cad were inhibited by the free radical-scavenging antioxidant, N-acetylcysteine, and the flavin-containing oxidase inhibitor, diphenyleneiodonium. Thus reactive oxygen species (ROS) contribute to stress-induced elevation of T-cad in HUVEC. Compared with control cells, HUVEC overexpressing T-cad (T-cad+-HUVEC) had higher phosphorylation levels for phosphatidylinositol 3-kinase (PI3K) target Akt and mTOR target p70(S6K) (survival pathway regulators), but lower levels for p38MAPK (death pathway regulator). T-cad+-HUVEC exposed to stress (serum-deprivation, TNF-alpha, actinomycin D, staurosporine) exhibited reduced caspase activation together with increased cell survival. Protection against stress-induced apoptosis in T-cad+-HUVEC was abrogated by either PI3K-inhibitor wortmannin or mTOR-inhibitor rapamycin. We conclude that T-cad overexpression in HUVEC protects against stress-induced apoptosis through activation of the PI3K/Akt/mTOR survival signal pathway and concomitant suppression of the p38 MAPK proapoptotic pathway. ROS-induced changes in T-cad expression may play an important role in controlling tissue cellularity during vascular remodeling.
    The FASEB Journal 11/2005; 19(12):1737-9. DOI:10.1096/fj.05-3834fje · 5.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence suggests that the mechanical and biochemical signals originating from cell-cell adhesion are critical for stem cell lineage specification. In this review, we focus on the role of cadherin mediated signaling in development and stem cell differentiation, with emphasis on two well-known cadherins, cadherin-2 (CDH2) (N-cadherin) and cadherin-11 (CDH11) (OB-cadherin). We summarize the existing knowledge regarding the role of CDH2 and CDH11 during development and differentiation in vivo and in vitro. We also discuss engineering strategies to control stem cell fate decisions by fine-tuning the extent of cell-cell adhesion through surface chemistry and microtopology. These studies may be greatly facilitated by novel strategies that enable monitoring of stem cell specification in real time. We expect that better understanding of how intercellular adhesion signaling affects lineage specification may impact biomaterial and scaffold design to control stem cell fate decisions in three-dimensional context with potential implications for tissue engineering and regenerative medicine. Copyright © 2015. Published by Elsevier B.V.
    Stem Cell Research 02/2015; 14(3). DOI:10.1016/j.scr.2015.02.002 · 3.91 Impact Factor
  • Source
    Pulmonary Hypertension - From Bench Research to Clinical Challenges, 12/2011; , ISBN: 978-953-307-835-9

Preview

Download
5 Downloads
Available from