High concordance of bipolar I disorder in a nationwide sample of twins.

Department of Mental Health and Alcohol Research, National Public Health Institute, 00300 Helsinki 30, Finland. .
American Journal of Psychiatry (Impact Factor: 13.56). 11/2004; 161(10):1814-21. DOI: 10.1176/appi.ajp.161.10.1814
Source: PubMed

ABSTRACT The few studies of bipolar I disorder in twins have consistently emphasized the genetic contribution to disease liability. The authors report what appears to be the first twin study of bipolar I disorder involving a population-based twin sample, in which the diagnoses were made by using structured, personal interviews.
All Finnish same-sex twins (N=19,124) born from 1940 to 1957 were screened for a diagnosis of bipolar I disorder as recorded in the National Hospital Discharge Register between 1969 and 1991 or self-reported in surveys of the Finnish Twin Cohort in 1975, 1981, and 1990. Thirty-eight pairs were thereby identified and invited to participate in the study; the participation rate was 68%. Lifetime diagnoses were made by using the Structured Clinical Interview for DSM-IV. The authors calculated probandwise and pairwise concordances and correlations in liability and applied biometrical model fitting.
The probandwise concordance rates were 0.43 (95% CI=0.10 to 0.82) for monozygotic twins and 0.06 (95% CI=0.00 to 0.27) for dizygotic twins. The correlations in liability were 0.85 and 0.41, respectively. The model with no familial transmission was rejected. The best-fitting model was the one in which genetic and specific environmental factors explained the variance in liability, with a heritability estimate of 0.93 (95% CI=0.69 to 1.00).
The high heritability of bipolar disorder was demonstrated in a nationwide population-based twin sample assessed with structured personal interviews.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously reported genome-wide significant linkage of bipolar disorder to a region on 22q12.3 near the marker D22S278. Towards identifying the susceptibility gene, we have conducted a fine-mapping association study of the region in two independent family samples, an independent case-control sample and a genome-wide association dataset. Two hundred SNPs were first examined in a 5 Mb region surrounding the D22S278 marker in a sample of 169 families and analyzed using PLINK. The peak of association was a haplotype near the genes stargazin (CACNG2), intraflagellar transport protein homolog 27 (IFT27) and parvalbumin (PVALB; P = 4.69 x 10(-4)). This peak overlapped a significant haplotype in a family based association study of a second independent sample of 294 families (P = 1.42 x 10(-5)). Analysis of the combined family sample yielded statistically significant evidence of association to a rare three SNP haplotype in the gene IFT27 (P = 8.89 x 10(-6)). Twelve SNPs comprising these haplotypes were genotyped in an independent sample of 574 bipolar I cases and 550 controls. Statistically significant association was found for a haplotype window that overlapped the region from the first two family samples (P = 3.43 x 10(-4)). However, analyses of the two family samples using the program LAMP, found no evidence for association in this region, but did yield significant evidence for association to a haplotype 3' of CACNG2 (P = 1.76 x 10(-6)). Furthermore, no evidence for association was found in a large genome-wide association dataset. The replication of association to overlapping haplotypes in three independent datasets suggests the presence of a bipolar disorder susceptibility gene in this region.
    American Journal of Medical Genetics Part B Neuropsychiatric Genetics 12/2012; 159B(8):941-50. · 3.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Based on the function of neuregulin 1 (NRG1) in neurodevelopment, susceptibility to bipolar disorder presumably involves this gene. The 3' region of NRG1 contains the majority of the coding exons, and transcripts from this region encode 8 of the 9 known NRG1 isoforms; therefore, this region is likely to be predominant versus the 5' region in terms of their relative contributions to NRG1 function. We investigated the association between the 3' region of the NRG1 gene and bipolar I disorder (BPI) in the Chinese Han population and performed further analyses depending on the presence or absence of psychotic features. A total of 385 BPI patients and 475 healthy controls were recruited for this study. Thirty tag single nucleotide polymorphisms (SNPs) across the 3' region of the NRG1 gene were genotyped for allelic and haplotypic associations with BPI and subgroups with psychotic features (BPI-P) or without psychotic features (BPI-NP). Individual marker analysis showed that 2 SNPs (rs12547858 and rs6468121) in this region were significantly associated with BPI. Moreover, subgroup analyses showed significant but marginal associations of rs6468121 with BPI-P and rs3757933 with BPI-NP. Haplotype analyses showed that 6 haplotypes were associated with BPI only. The sample size was relatively small. The investigated tag SNPs only represented 83% of the information on the targeted region. There might be a retrospective bias in the subgroup analyses. The results suggest that the 3' region of the NRG1 gene plays a role in BPI susceptibility in the Chinese Han population. In addition, the preliminary results show that BPI with psychotic features and BPI without psychotic features may constitute different sub-phenotypes; however, this finding should be confirmed in a larger population sample.
    Journal of Affective Disorders 06/2014; 162:81-8. · 3.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bipolar disorder (BD) is a complex psychiatric phenotype with a high heritability and a multifactorial etiology. Multisite collaborative efforts using genome-wide association studies (GWAS) have identified only a portion of DNA sequence-based risk factors in BD. In addition to predisposing DNA sequence variants, epigenetic misregulation may play an etiological role in BD and account for monozygotic twin discordance, parental origin effects, and fluctuating course of BD. In this study, we investigated DNA methylation of the brain-derived neurotrophic factor (BDNF) gene in BD. Fifty participants with BD were compared to the same number of age- and sex-matched controls for DNA methylation differences at BDNF promoters 3 and 5. DNA methylation reads were obtained using a mass spectrophotometer for 64 cytosine-guanine (CpG) sites in 36 CpG 'units' across three amplicons of BDNF promoters 3 and 5. Methylation fractions differed between BD participants and controls for 11 of 36 CpG units. Five CpG units, mostly in promoter 5, remained significant after false discovery rate correction (FDR) (p values ≤ 0.004) with medium to large effect sizes (Cohen's d ≥ 0.61). Several of the significant CpGs overlapped with or were immediately adjacent to transcription factor binding sites (TFBSs) - including two of the FDR-significant CpG units in promoter 5. For the CpGs in promoter 3, there was a positive and significant correlation between age at sample collection and DNA methylation fraction (rho = 0.56, p = 2.8 ×10(-5)) in BD cases, but not in controls. Statistically significant differences in mean methylation fraction at 5/36 CpG units (after FDR), some at or immediately adjacent to TFBSs, suggest possible relevance for the current findings to BD etiopathogenesis. The positive correlation between age and methylation seen in promoter 3 is consistent with age-related decline in BDNF expression previously reported. Future studies should provide more exhaustive epigenetic study of the BDNF locus to better characterize the relationship between BDNF methylation differences and BD.
    International journal of bipolar disorders. 01/2013; 1:28.

Full-text (2 Sources)

Available from
Jun 3, 2014