Article

Clioquinol mediates copper uptake and counteracts copper efflux activities of the amyloid precursor protein of Alzheimer's disease

Freie Universitaet Berlin, Institut fuer Chemie/Biochemie, Thielallee 63, D-14195 Berlin, Germany.
Journal of Biological Chemistry (Impact Factor: 4.6). 01/2005; 279(50):51958-64. DOI: 10.1074/jbc.M407410200
Source: PubMed

ABSTRACT The key protein in Alzheimer's disease, the amyloid precursor protein (APP), is a ubiquitously expressed copper-binding glycoprotein that gives rise to the Abeta amyloid peptide. Whereas overexpression of APP results in significantly reduced brain copper levels in three different lines of transgenic mice, knock-out animals revealed increased copper levels. A provoked rise in peripheral levels of copper reduced concentrations of soluble amyloid peptides and resulted in fewer pathogenic Abeta plaques. Contradictory evidence has been provided by the efficacy of copper chelation treatment with the drug clioquinol. Using a yeast model system, we show that adding clioquinol to the yeast culture medium drastically increased the intracellular copper concentration but there was no significant effect observed on zinc levels. This finding suggests that clioquinol can act therapeutically by changing the distribution of copper or facilitating copper uptake rather than by decreasing copper levels. The overexpression of the human APP or APLP2 extracellular domains but not the extracellular domain of APLP1 decreased intracellular copper levels. The expression of a mutant APP deficient for copper binding increased intracellular copper levels several-fold. These data uncover a novel biological function for APP and APLP2 in copper efflux and provide a new conceptual framework for the formerly diverging theories of copper supplementation and chelation in the treatment of Alzheimer's disease.

0 Followers
 · 
88 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Copper is present in different concentrations and chemical forms throughout the earth crust, surface and deep water and even, in trace amounts, in the atmosphere itself. Copper is one of the first metals used by humans, the first artifacts dating back 10,000 years ago. Currently, the world production of refined copper exceeds 16,000 tons / year. Copper is a micro-element essential to life, principally for its red-ox properties that make it a necessary cofactor for many enzymes, like cytochrome-c oxidase and superoxide dismutase. In some animal species (e.g. octopus, snails, spiders, oysters) copper-hemocyanins also act as carriers of oxygen instead of hemoglobin. However, these red-ox properties also make the pair Cu+/Cu2+ a formidable catalyst for the formation of Reactive Oxygen Species, when copper is present in excess in the body or in tissues. The treatment of choice in cases of copper overloading or intoxication is the chelation therapy. Different molecules are already in clinical use as chelators or under study or clinical trial. It is worth noting that chelation therapy has also been suggested to treat some neurodegenerative diseases or cardiovascular disorders. In this review, after a brief description of the homeostasis and some cases of dyshomeostasis of copper, the main (used or potential) chelators are described; their properties in solution, even in relation to the presence of metal or ligand competitors, under physiological conditions, are discussed. The legislation of the most important Western countries, regarding both the use of chelating agents and the limits of copper in foods, drugs and cosmetics, is also outlined.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: No disease modifying therapy exists for Alzheimer's disease (AD). The growing burden of this disease to our society necessitates continued investment in drug development. Over the last decade, multiple phase 3 clinical trials testing drugs that were designed to target established disease mechanisms of AD have all failed to benefit patients. There is, therefore, a need for new treatment strategies. Changes to the transition metals, zinc, copper, and iron, in AD impact on the molecular mechanisms of disease, and targeting these metals might be an alternative approach to treat the disease. Here we review how metals feature in molecular mechanisms of AD, and we describe preclinical and clinical data that demonstrate the potential for metal-based drug therapy.
    Journal of the American Society for Experimental NeuroTherapeutics 10/2014; 12(1). DOI:10.1007/s13311-014-0312-z · 3.88 Impact Factor