Selective maturation of dendritic cells by Nippostrongylus brasiliensis-secreted proteins drives Th2 immune responses.

Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK.
European Journal of Immunology (Impact Factor: 4.97). 12/2004; 34(11):3047-59. DOI: 10.1002/eji.200425167
Source: PubMed

ABSTRACT Helminth infections at mucosal and tissue sites strongly polarize towards Th2 immune responses, following pathways which have yet to be elucidated. We investigated whether dendritic cells (DC) exposed to gastrointestinal nematodes induce Th2 differentiation and, if so, whether this outcome reflects the absence of DC activation (the default hypothesis). We studied secreted proteins from the parasite Nippostrongylus brasiliensis, which induce Th2 development in vivo without live infection. Murine bone marrow-derived DC pulsed with N. brasiliensis excretory/secretory antigen (NES) can, on transfer to naive recipients, prime mice for Th2 responsiveness. Heat inactivation of NES abolishes both its ability to drive Th2 responses in vivo and its capacity to stimulate DC for Th2 induction. NES, but not heat-inactivated NES, up-regulates DC maturation markers associated with Th2 promotion (CD86 and OX40L), with little change to CD80 and MHC class II. Moreover, DC exposed to NES readily produce IL-6 and IL-12p40, but not IL-12p70. LPS induced high IL-12p70 levels, except in DC that had been pre-incubated with NES. These data contradict the default hypothesis, demonstrating that a helminth product (NES) actively matures DC, selectively up-regulating CD86 and OX40L together with IL-6 production, while blocking IL-12p70 responsiveness in a manner consistent with Th2 generation in vivo.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Whereas recent research has characterized the mechanism by which dendritic cells (DCs) induce TH1/TH17 responses, the functional specialization enabling DCs to polarize TH2 responses remains undefined. Because IL-4 is essential during TH2 responses not only by acting on CD4(+) T cells through the activation of GATA-3 but also by regulating IgE class-switching, epithelial cell permeability, and muscle contractility, we hypothesized that IL-4 could also have a role in the conditioning of DCs during TH2 responses. We sought to analyze whether IL-4 exerts an immunomodulatory function on DCs during their differentiation, leading to their functional specialization for the induction of TH2 responses. Monocyte-derived DCs (moDCs) conditioned by IL-4 during their differentiation (IL-4-conditioned moDCs [IL-4-moDCs]) were analyzed for TH1-polarizing/inflammatory cytokine production in response to Toll-like receptor stimulation. The acetylation level of the promoters of the genes encoding these cytokines was analyzed by using chromatin immunoprecipitation. Gene expression profiling of IL-4-moDCs was defined by using mouse genome microarrays. IL-4-moDCs were tested for their capacity to induce house dust mite-mediated allergic reactions. Our data suggest that IL-4 inhibits TH1-polarizing/inflammatory cytokine gene expression on IL-4-moDCs through the deacetylation of the promoters of these genes, leading to their transcriptional repression. Microarray analyses confirmed that IL-4 upregulated TH2-related genes as eosinophil-associated ribonucleases, eosinophil/basophil chemokines, and M2 genes. IL-4 licensed moDCs for the induction of TH2 responses, causing house dust mite-mediated allergic airway inflammation. This study describes a new role for IL-4 by demonstrating that moDCs are conditioned by IL-4 for the induction of TH2 responses by blocking TH1-polarizing/inflammatory cytokine production through histone hypoacetylation and upregulating TH2-related genes.
    The Journal of allergy and clinical immunology 10/2013; · 12.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The immune system of the gastrointestinal tract must be tightly regulated to limit pathologic responses toward innocuous antigens while simultaneously allowing for rapid development of effector responses against invading pathogens. Highly specialized antigen-presenting cell (APC) subsets present in the gut play a dominant role in balancing these seemingly disparate functions. In this review, we discuss new findings associated with the function of gut APCs and particularly the contextual role of these cells in both establishing tolerance to orally acquired antigens in the steady state and regulating acute inflammation during infection.
    Immunological Reviews 05/2014; 259(1). · 12.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many evidences show the inverse correlation between helminth infection and allergic or autoimmune diseases. Identification and characterization of the active helminth-derived products responsible for the beneficial effects on allergic or inflammatory diseases will provide another feasible approach to treat these diseases. Colitis was induced in C57BL/6 mice by giving 3% DSS orally for 7 days. During this period, the mice were treated daily with the excretory/secretory products from T. spiralis adult worms (AES) intraperitoneally. The severity of colitis was monitored by measuring body weight, stool consistency or bleeding, colon length and inflammation. To determine the T. spiralis AES product-induced immunological response, Th1, Th2, Th17 and regulatory cytokine profiles were measured in lymphocytes isolated from colon, mesenteric lymph nodes (MLN), and the spleen of treated mice. The CD4+ CD25+ FOXP3+ regulatory T cells (Tregs) were also measured in the spleens and MLN of treated mice. Mice treated with AES significantly ameliorated the severity of the DSS-induced colitis indicated by the reduced disease manifestations, improved macroscopic and microscopic inflammation correlated with the up-regulation of Treg response (increased regulatory cytokines IL-10, TGF-beta and regulatory T cells) and down-regulation of pro-inflammatory cytokines (IFN-gamma, IL-6 and IL-17) in the spleens, MLN and colon of treated mice. Our results provide direct evidences that T. spiralis AES have a therapeutic potential for alleviating inflammatory colitis in mice. This effect is possibly mediated by the immunomodulation of regulatory T cells to produce regulatory and anti-inflammatory cytokines and inhibit pro-inflammatory cytokines.
    PLoS ONE 01/2014; 9(5):e96454. · 3.73 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014