Article

Plk1 regulates activation of the anaphase promoting complex by phosphorylating and triggering SCFbetaTrCP-dependent destruction of the APC Inhibitor Emi1.

Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
Molecular Biology of the Cell (Impact Factor: 4.55). 01/2005; 15(12):5623-34. DOI: 10.1091/mbc.E04-07-0598
Source: PubMed

ABSTRACT Progression through mitosis requires activation of cyclin B/Cdk1 and its downstream targets, including Polo-like kinase and the anaphase-promoting complex (APC), the ubiquitin ligase directing degradation of cyclins A and B. Recent evidence shows that APC activation requires destruction of the APC inhibitor Emi1. In prophase, phosphorylation of Emi1 generates a D-pS-G-X-X-pS degron to recruit the SCF(betaTrCP) ubiquitin ligase, causing Emi1 destruction and allowing progression beyond prometaphase, but the kinases directing this phosphorylation remain undefined. We show here that the polo-like kinase Plk1 is strictly required for Emi1 destruction and that overexpression of Plk1 is sufficient to trigger Emi1 destruction. Plk1 stimulates Emi1 phosphorylation, betaTrCP binding, and ubiquitination in vitro and cyclin B/Cdk1 enhances these effects. Plk1 binds to Emi1 in mitosis and the two proteins colocalize on the mitotic spindle poles, suggesting that Plk1 may spatially control Emi1 destruction. These data support the hypothesis that Plk1 activates the APC by directing the SCF-dependent destruction of Emi1 in prophase.

1 Bookmark
 · 
81 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: Polo-like kinase (PLK)1 is the most studied of the PLK family and is a serine/threonine kinase that plays pivotal roles in many aspects of mitosis and hence its deregulation is prevalent in various malignant tumor types. Areas covered: In this review, the authors discuss the relevancy of PLK1 and other PLK members as oncology targets in light of known roles of these kinases and the observed phenotypic consequence of downregulating their activity, depending on how they are targeted. Furthermore, they also discuss the pathways mutated in cancer that have been shown to enhance sensitivity toward PLK1 inhibitors in the context of tumor types that possess these molecular defects. They also summarize preclinical and clinical investigations that have been undertaken for both ATP and non-ATP competitive inhibitors. Expert opinion: PLKs 2, 3 and 5 are primarily linked with tumor suppressor functions and as PLK1 is the most validated anticancer drug target, selective inhibitors for its activities are most likely to result in effective therapeutics with reduced side effects. In this regard, the polo box domain can be targeted to generate selective inhibitors of PLK1 while preventing inhibition of kinases outside of this family. Recent studies confirming the synthetic lethality of other molecular defects with PLK1 can be exploited to obtain tumor selective apoptosis in p53, KRAS and PTEN mutant cancers.
    Expert Opinion on Drug Discovery 05/2014; DOI:10.1517/17460441.2014.918100 · 3.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The appropriate timing of events that lead to chromosome segregation during mitosis and cytokinesis is essential to prevent aneuploidy, and defects in these processes can contribute to tumorigenesis. Key mitotic regulators are controlled through ubiquitylation and proteasome-mediated degradation. The APC/C (anaphase-promoting complex; also known as the cyclosome) is an E3 ubiquitin ligase that has a crucial function in the regulation of the mitotic cell cycle, particularly at the onset of anaphase and during mitotic exit. Co-activator proteins, inhibitor proteins, protein kinases and phosphatases interact with the APC/C to temporally and spatially control its activity and thus ensure accurate timing of mitotic events.
    Nature Reviews Molecular Cell Biology 01/2015; 16(2):82-94. DOI:10.1038/nrm3934 · 37.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polo-like kinase 1 (PLK1) orchestrates multiple events of cell division. Although PLK1 function has been intensively studied in centriole-containing and rapidly cycling somatic cells, much less is known about its function in the meiotic divisions of mammalian oocytes, which arrest for a long period of time in prophase before meiotic resumption and lack centrioles for spindle assembly. Here, using specific small molecule inhibition combined with live mouse oocyte imaging, we comprehensively characterize meiotic PLK1's functions. We show that PLK1 becomes activated at meiotic resumption on microtubule organizing centers (MTOCs) and later at kinetochores. PLK1 is required for efficient meiotic resumption by promoting nuclear envelope breakdown. PLK1 is also needed to recruit centrosomal proteins to acentriolar MTOCs to promote normal spindle formation, as well as for stable kineto-chore-microtubule attachment. Consequently, PLK1 inhibition leads to metaphase I arrest with misaligned chromosomes activating the spindle assembly checkpoint (SAC). Unlike in mitosis, the metaphase I arrest is not bypassed by the inactivation of the SAC. We show that PLK1 is required for the full activation of the anaphase promoting complex/cyclosome (APC/C) by promoting the degradation of the APC/C inhibitor EMI1 and is therefore essential for entry into anaphase I. Moreover, our data suggest that PLK1 is required for proper chromosome segregation and the maintenance of chromosome condensation during the meiosis I-II transition, independently of the APC/C. Thus, our results define the meiotic roles of PLK1 in oocytes and reveal interesting differential requirements of PLK1 between mitosis and oocyte meiosis in mammals.
    PLoS ONE 02/2015; 10(2). DOI:10.1371/journal.pone.0116783 · 3.53 Impact Factor

Full-text (2 Sources)

Download
19 Downloads
Available from
May 26, 2014