Article

Cross-scale interactions, nonlinearities, and forecasting catastrophic events.

U.S. Department of Agriculture Agricultural Research Service, Jornada Experimental Range, New Mexico State University, Las Cruces, NM 88003, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 10/2004; 101(42):15130-5. DOI: 10.1073/pnas.0403822101
Source: PubMed

ABSTRACT Catastrophic events share characteristic nonlinear behaviors that are often generated by cross-scale interactions and feedbacks among system elements. These events result in surprises that cannot easily be predicted based on information obtained at a single scale. Progress on catastrophic events has focused on one of the following two areas: nonlinear dynamics through time without an explicit consideration of spatial connectivity [Holling, C. S. (1992) Ecol. Monogr. 62, 447-502] or spatial connectivity and the spread of contagious processes without a consideration of cross-scale interactions and feedbacks [Zeng, N., Neeling, J. D., Lau, L. M. & Tucker, C. J. (1999) Science 286, 1537-1540]. These approaches rarely have ventured beyond traditional disciplinary boundaries. We provide an interdisciplinary, conceptual, and general mathematical framework for understanding and forecasting nonlinear dynamics through time and across space. We illustrate the generality and usefulness of our approach by using new data and recasting published data from ecology (wildfires and desertification), epidemiology (infectious diseases), and engineering (structural failures). We show that decisions that minimize the likelihood of catastrophic events must be based on cross-scale interactions, and such decisions will often be counterintuitive. Given the continuing challenges associated with global change, approaches that cross disciplinary boundaries to include interactions and feedbacks at multiple scales are needed to increase our ability to predict catastrophic events and develop strategies for minimizing their occurrence and impacts. Our framework is an important step in developing predictive tools and designing experiments to examine cross-scale interactions.

0 Bookmarks
 · 
121 Views
  • Source
    Ecosphere 01/2014; 5(1):art2. · 2.60 Impact Factor
  • Source
    Forest Ecology and Management 12/2013; 310:875-886. · 2.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature). We used nonparametric cluster analyses of a 17-year (1993-2009) data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires) over a 13-year period with fire records (1997-2009). Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with timing of natural lightning ignitions should be useful as a basis for ecological fire management of humid savanna-grassland landscapes worldwide.
    PLoS ONE 01/2015; 10(1):e0116952. · 3.53 Impact Factor

Full-text (2 Sources)

Download
40 Downloads
Available from
May 22, 2014