Article

Cyclin-dependent kinase 5 phosphorylates serine 31 of tyrosine hydroxylase and regulates its stability.

Department of Pathology and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 01/2005; 279(52):54487-93. DOI: 10.1074/jbc.M406636200
Source: PubMed

ABSTRACT Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis, and its activity is regulated by phosphorylation in the N-terminal regulatory domain. The proline-directed serine/threonine kinase cyclin-dependent kinase 5 (cdk5) plays an important role in diverse neuronal processes. In the present study, we identify TH as a novel substrate of cdk5. We show that cdk5 phosphorylates TH at serine 31 and that this phosphorylation is associated with an increase in total TH activity. In transgenic mice with increased cdk5 activity, the immunoreactivity for phosphorylated TH at Ser-31 is enhanced in neurons of the substantia nigra, a brain region enriched with TH-positive neurons. In addition, we demonstrate that co-expression of cdk5 and its regulatory activator p35 with TH increases the stability of TH. Consistent with these findings, TH protein levels are reduced in cdk5 knock-out mice. Importantly, the TH activity and protein turnover of the phosphorylation-defective mutant TH S31A was not altered by cdk5 activity. Taken together, these data suggest that cdk5 phosphorylation of TH is an important regulator of TH activity through stabilization of TH protein levels.

0 Bookmarks
 · 
61 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, is strictly controlled by several interrelated regulatory mechanisms. Enzyme synthesis is controlled by epigenetic factors, transcription factors, and mRNA levels. Enzyme activity is regulated by end-product feedback inhibition. Phosphorylation of the enzyme is catalyzed by several protein kinases and dephosphorylation is mediated by two protein phosphatases that establish a sensitive process for regulating enzyme activity on a minute-to-minute basis. Interactions between tyrosine hydroxylase and other proteins introduce additional layers to the already tightly controlled production of catecholamines. Tyrosine hydroxylase degradation by the ubiquitin-proteasome coupled pathway represents yet another mechanism of regulation. Here, we revisit the myriad mechanisms that regulate tyrosine hydroxylase expression and activity and highlight their physiological importance in the control of catecholamine biosynthesis.
    Journal of Neural Transmission 05/2014; · 2.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cdk5 has been implicated in a multitude of processes in neuronal development, cell biology and physiology. These influence many neurological disorders, but the very breadth of Cdk5 effects has made it difficult to synthesize a coherent picture of the part played by this protein in health and disease. In this review, we focus on the roles of Cdk5 in neuronal function, particularly synaptic homeostasis, plasticity, neurotransmission, subcellular organization, and trafficking. We then discuss how disruption of these Cdk5 activities may initiate or exacerbate neural disorders. A recurring theme will be the sensitivity of Cdk5 sequelae to the precise biological context under consideration.
    Brain disorders & therapy. 07/2012; 2012(Suppl 1):001.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dopamine neurons in the ventral tegmental area (VTA) govern reward and motivation and dysregulated dopaminergic transmission may account for anhedonia and other symptoms of depression. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that regulates a broad range of brain functions through phosphorylation of a myriad of substrates, including tyrosine hydroxylase (TH), the rate-limiting enzyme for dopamine synthesis. We investigated whether and how Cdk5 activity in VTA dopamine neurons regulated depression-related behaviors in mice. Using the Cre/LoxP system to selectively delete Cdk5 in the VTA or in midbrain dopamine neurons in Cdk5(loxP/loxP) mice, we showed that Cdk5 loss of function in the VTA induced anxiety- and depressive-like behaviors that were associated with decreases in TH phosphorylation at Ser31 and Ser40 in the VTA and dopamine release in its target region, the nucleus accumbens. The decreased phosphorylation of TH at Ser31 was a direct effect of Cdk5 deletion, whereas decreased phosphorylation of TH at Ser40 was likely caused by impaired cAMP/protein kinase A (PKA) signaling, because Cdk5 deletion decreased cAMP and phosphorylated cAMP response element-binding protein (p-CREB) levels in the VTA. Using Designer Receptors Exclusively Activated by Designer Drugs (DREADD) technology, we showed that selectively increasing cAMP levels in VTA dopamine neurons increased phosphorylation of TH at Ser40 and CREB at Ser133 and reversed behavioral deficits induced by Cdk5 deletion. The results suggest that Cdk5 in the VTA regulates cAMP/PKA signaling, dopaminergic neurotransmission, and depression-related behaviors.
    Journal of Neuroscience 04/2014; 34(18):6352-6366. · 6.75 Impact Factor