Article

MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer.

Division of Medical Oncology, Department of Medicine, Stanford University, California 94305, USA.
Nature (Impact Factor: 42.35). 11/2004; 431(7012):1112-7. DOI: 10.1038/nature03043
Source: PubMed

ABSTRACT Hepatocellular carcinoma is generally refractory to clinical treatment. Here, we report that inactivation of the MYC oncogene is sufficient to induce sustained regression of invasive liver cancers. MYC inactivation resulted en masse in tumour cells differentiating into hepatocytes and biliary cells forming bile duct structures, and this was associated with rapid loss of expression of the tumour marker alpha-fetoprotein, the increase in expression of liver cell markers cytokeratin 8 and carcinoembryonic antigen, and in some cells the liver stem cell marker cytokeratin 19. Using in vivo bioluminescence imaging we found that many of these tumour cells remained dormant as long as MYC remain inactivated; however, MYC reactivation immediately restored their neoplastic features. Using array comparative genomic hybridization we confirmed that these dormant liver cells and the restored tumour retained the identical molecular signature and hence were clonally derived from the tumour cells. Our results show how oncogene inactivation may reverse tumorigenesis in the most clinically difficult cancers. Oncogene inactivation uncovers the pluripotent capacity of tumours to differentiate into normal cellular lineages and tissue structures, while retaining their latent potential to become cancerous, and hence existing in a state of tumour dormancy.

Full-text

Available from: Stefanie Mandl, May 30, 2015
1 Follower
 · 
151 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocellular carcinoma (HCC) is currently one of the top lethal cancers with an increasing trend. Deregulation of MYC in HCC is frequently detected and always correlated with poor prognosis. As the zebrafish genome contains two differentially expressed zebrafish myc orthologs, myca and mycb, it remains unclear about the oncogenicity of the two zebrafish myc genes. In the present study, we developed two transgenic zebrafish lines to over-express myca and mycb respectively in the liver using a mifepristone-inducible system and found that both myc genes were oncogenic. Moreover, the transgenic expression of myca in hepatocytes caused robust liver tumors with several distinct phenotypes of variable severity. ~5% of myca transgenic fish developing multinodular HCC with cirrhosis after 8 months of induced myca expression. Apoptosis was also observed with myca expression; introduction of homozygous tp53-/- mutation into the myca transgenic fish reduced apoptosis and accelerated tumor progression. The malignant status of hepatocytes was dependent on continued expression of myca; withdrawal of the mifepristone inducer resulted in a rapid regression of liver tumors, and the tumor regression occurred even in the tp53-/- mutation background. Thus, our data demonstrated the robust oncogenicity of zebrafish myca and the requirement of sustained Myc overexpression for maintenance of the liver tumor phenotype in this transgenic model. Furthermore, tumor regression is independent of the function of Tp53.
    PLoS ONE 01/2015; 10(1):e0117249. DOI:10.1371/journal.pone.0117249 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genomic analysis of human hepatocellular carcinoma (HCC) is potentially confounded by the differentiation state of the hepatic cell-of-origin. Here we integrated genomic analysis of mouse HCC (with defined cell-of-origin) along with normal development. We found a major shift in expression of Wnt and RXR-α pathway genes (up and down, respectively) coincident with the transition from hepatoblasts to hepatocytes. A combined Wnt and RXR-α gene signature categorized HCCs into two subtypes (high Wnt, low RXR-α and low Wnt, high RXR-α), which matched cell-of-origin in mouse models and the differentiation state of human HCC. Suppression of RXR-α levels in hepatocytes increased Wnt signaling and enhanced tumorigenicity, whereas ligand activation of RXR-α achieved the opposite. These results corroborate that there are two main HCC subtypes that correspond to the degree of hepatocyte differentation and that RXR-α, in part via Wnt signaling, plays a key functional role in the hepatocyte-like subtype and potentially could serve as a selective therapeutic target.
    PLoS ONE 03/2015; 10(3):e0118480. DOI:10.1371/journal.pone.0118480 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cancer stem cells (CSCs) are tumor cells that have the principal properties of self-renewal, clonal tumor initiation capacity, and clonal long-term repopulation potential. CSCs reside in niches, which are anatomically distinct regions within the tumor microenvironment. These niches maintain the principle properties of CSCs, preserve their phenotypic plasticity, protect them from the immune system, and facilitate their metastatic potential. In this perspective, we focus on the CSC niche and discuss its contribution to tumor initiation and progression. Since CSCs survive many commonly employed cancer therapies, we examine the prospects of targeting the niche components as preferable therapeutic targets. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cell Stem Cell 03/2015; 16(3). DOI:10.1016/j.stem.2015.02.015 · 22.15 Impact Factor