MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer.

Division of Medical Oncology, Department of Medicine, Stanford University, California 94305, USA.
Nature (Impact Factor: 42.35). 11/2004; 431(7012):1112-7. DOI: 10.1038/nature03043
Source: PubMed

ABSTRACT Hepatocellular carcinoma is generally refractory to clinical treatment. Here, we report that inactivation of the MYC oncogene is sufficient to induce sustained regression of invasive liver cancers. MYC inactivation resulted en masse in tumour cells differentiating into hepatocytes and biliary cells forming bile duct structures, and this was associated with rapid loss of expression of the tumour marker alpha-fetoprotein, the increase in expression of liver cell markers cytokeratin 8 and carcinoembryonic antigen, and in some cells the liver stem cell marker cytokeratin 19. Using in vivo bioluminescence imaging we found that many of these tumour cells remained dormant as long as MYC remain inactivated; however, MYC reactivation immediately restored their neoplastic features. Using array comparative genomic hybridization we confirmed that these dormant liver cells and the restored tumour retained the identical molecular signature and hence were clonally derived from the tumour cells. Our results show how oncogene inactivation may reverse tumorigenesis in the most clinically difficult cancers. Oncogene inactivation uncovers the pluripotent capacity of tumours to differentiate into normal cellular lineages and tissue structures, while retaining their latent potential to become cancerous, and hence existing in a state of tumour dormancy.

Download full-text


Available from: Stefanie Mandl, Jun 28, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Undifferentiated thyroid carcinoma is one of the most aggressive human cancers with frequent RAS mutations. How mutations of the RAS gene contribute to undifferentiated thyroid cancer remains largely unknown. Mice harboring a potent dominant negative mutant thyroid hormone receptor β, TRβPV (ThrbPV/PV), spontaneously develop well-differentiated follicular thyroid cancer similar to human cancer. We genetically targeted the KrasG12D mutation to thyroid epithelial cells of ThrbPV/PV mice to understand how KrasG12D mutation could induce undifferentiated thyroid cancer in ThrbPV/PVKrasG12D mice. ThrbPV/PVKrasG12D mice exhibited poorer survival due to more aggressive thyroid tumors with capsular invasion, vascular invasion, and distant metastases to the lung occurring at an earlier age and at a higher frequency than ThrbPV/PV mice did. Importantly, ThrbPV/PVKrasG12D mice developed frequent anaplastic foci with complete loss of normal thyroid follicular morphology. Within the anaplastic foci, the thyroid-specific transcription factor paired box gene 8 (PAX8) expression was virtually lost and the loss of PAX8 expression was inversely correlated with elevated MYC expression. Consistently, co-expression of KRASG12D with TRβPV upregulated MYC levels in rat thyroid pccl3 cells, and MYC acted to enhance the TRβPV-mediated repression of the Pax8 promoter activity of a distant upstream enhancer, critical for thyroid-specific Pax8 expression. Our findings indicated that synergistic signaling of KRASG12D and TRβPV led to increased MYC expression. Upregulated MYC contributes to the initiation of undifferentiated thyroid cancer, in part, through enhancing TRβPV-mediated repression of the Pax8 expression. Thus, MYC might serve as a potential target for therapeutic intervention.
    Neoplasia (New York, N.Y.) 09/2014; 16(9):757–769. DOI:10.1016/j.neo.2014.08.003 · 5.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One-year survival rates for newly diagnosed hepatocellular carcinoma (HCC) are <50%, and unresectable HCC carries a dismal prognosis owing to its aggressiveness and the undruggable nature of its main genetic drivers. By screening a custom library of shRNAs directed toward known drug targets in a genetically defined Myc-driven HCC model, we identified cyclin-dependent kinase 9 (Cdk9) as required for disease maintenance. Pharmacological or shRNA-mediated CDK9 inhibition led to robust anti-tumor effects that correlated with MYC expression levels and depended on the role that both CDK9 and MYC exert in transcription elongation. Our results establish CDK9 inhibition as a therapeutic strategy for MYC-overexpressing liver tumors and highlight the relevance of transcription elongation in the addiction of cancer cells to MYC.
    Genes & development 08/2014; 28(16):1800-14. DOI:10.1101/gad.244368.114 · 12.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Liver cell turnover is very slow, especially compared to intestines and stomach epithelium and hair cells. Since the liver is the main detoxifying organ in the body, it does not come as a surprise that the liver has an unmatched regenerative capacity. After 70% partial hepatectomy, the liver size returns to normal in about two weeks due to replication of differentiated hepatocytes and cholangiocytes. Despite this, liver diseases are regularly encountered in the veterinary clinic. Dogs primarily present with parenchymal pathologies such as hepatitis. The estimated frequency of canine hepatitis depends on the investigated population and accounts for 1%-2% of our university clinic referral population, and up to 12% in a general population. In chronic and severe acute liver disease, the regenerative and replicative capacity of the hepatocytes and/or cholangiocytes falls short and the liver is not restored. In this situation, proliferation of hepatic stem cells or hepatic progenitor cells (HPCs), on histology called the ductular reaction, comes into play to replace the damaged hepatocytes or cholangiocytes. For unknown reasons the ductular reaction is often too little and too late, or differentiation into fully differentiated hepatocytes or cholangiocytes is hampered. In this way, HPCs fail to fully regenerate the liver. The presence and potential of HPCs does, however, provide great prospectives for their use in regenerative strategies. This review highlights the regulation of, and the interaction between, HPCs and other liver cell types and discusses potential regenerative medicine-oriented strategies in canine hepatitis, making use of (liver) stem cells.
    01/2014; DOI:10.1080/01652176.2013.875240