Article

GI262570, a peroxisome proliferator-activated receptor {gamma} agonist, changes electrolytes and water reabsorption from the distal nephron in rats.

Department of Molecular Pharmacology, GlaxoSmithKline, Inc., Five Moore Drive, Research Triangle Park, NC 27709, USA.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.89). 03/2005; 312(2):718-25. DOI: 10.1124/jpet.104.074088
Source: PubMed

ABSTRACT Peroxisome proliferator-activated receptor-gamma (PPARgamma) agonists have been shown to have significant therapeutic benefits such as desirable glycemic control in type 2 diabetic patients; however, these agents may cause fluid retention in susceptible individuals. Since PPARgamma is expressed selectively in distal nephron epithelium, we studied the mechanism of PPARgamma agonist-induced fluid retention using male Sprague-Dawley rats treated with either vehicle or GI262570 (farglitazar), a potent PPARgamma agonist. GI262570 (20 mg/kg/day) induced a plasma volume expansion. The plasma volume expansion was accompanied by a small but significant decrease in plasma potassium concentration. Small but significant increases in plasma sodium and chloride concentrations were also observed. These changes in serum electrolytes suggested an activation of the renal mineralocorticoid response system; however, GI262570-treated rats had lower plasma levels of aldosterone compared with vehicle-treated controls. mRNA levels for a group of genes involved in distal nephron sodium and water absorption are changed in the kidney medulla with GI262570 treatment. In addition, due to a possible rebound effect on epithelial sodium channel (ENaC) activity, a low dose of amiloride did not prevent GI262570-induced fluid retention. On the contrary, the rebound effect after amiloride treatment potentiated GI262570-induced plasma volume expansion. This is at least partially due to a synergistic effect of GI262570 and the rebound from amiloride treatment on ENaCalpha expression. In summary, our current data suggest that GI262570 can increase water and sodium reabsorption in distal nephron by stimulating the ENaC and Na,K-ATPase system. This may be an important mechanism for PPARgamma agonist-induced fluid retention.

0 Bookmarks
 · 
60 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Much concern has arisen regarding critical adverse effects of thiazolidinediones (TZDs), including rosiglitazone and pioglitazone, on cardiac tissue. Although TZD-induced cardiac hypertrophy (CH) has been attributed to an increase in plasma volume or a change in cardiac nutrient preference, causative roles have not been established. To test the hypothesis that volume expansion directly mediates rosiglitazone-induced CH, mice were fed a high-fat diet with rosiglitazone, and cardiac and metabolic consequences were examined. Rosiglitazone treatment induced volume expansion and CH in wild-type and PPARγ heterozygous knockout (Pparg(+/-)) mice, but not in mice defective for ligand binding (Pparg(P465L/+)). Cotreatment with the diuretic furosemide in wild-type mice attenuated rosiglitazone-induced CH, hypertrophic gene reprogramming, cardiomyocyte apoptosis, hypertrophy-related signal activation, and left ventricular dysfunction. Similar changes were observed in mice treated with pioglitazone. The diuretics spironolactone and trichlormethiazide, but not amiloride, attenuated rosiglitazone effects on volume expansion and CH. Interestingly, expression of glucose and lipid metabolism genes in the heart was altered by rosiglitazone, but these changes were not attenuated by furosemide cotreatment. Importantly, rosiglitazone-mediated whole-body metabolic improvements were not affected by furosemide cotreatment. We conclude that releasing plasma volume reduces adverse effects of TZD-induced volume expansion and cardiac events without compromising TZD actions in metabolic switch in the heart and whole-body insulin sensitivity.
    American Journal Of Pathology 11/2013; · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Peroxisome proliferator-activated receptor- γ (PPAR γ ) agonists such as rosiglitazone and pioglitazone are used to improve insulin sensitivity in patients with diabetes mellitus. However, thiazolidinediones induce fluid retention, edema, and sometimes precipitate or exacerbate heart failure in a subset of patients. The mechanism through which thiazolidinediones induce fluid retention is controversial. Most studies suggest that this effect results from the increase in tubular sodium and water reabsorption in the kidney, but the role of specific nephron segments and sodium carriers involved is less clear. Some studies suggested that PPAR γ agonist stimulates Na(+) reabsorption in the collecting duct by activating epithelial Na(+) channel (ENaC), either directly or through serum and glucocorticoid-regulated kinase-1 (SGK-1). However, other studies did not confirm this mechanism and even report the suppression of ENaC. Alternative mechanisms in the collecting duct include stimulation of non-ENaC sodium channel or inhibition of chloride secretion to the tubular lumen. In addition, thiazolidinediones may augment sodium reabsorption in the proximal tubule by stimulating the expression and activity of apical Na(+)/H(+) exchanger-3 and basolateral Na(+)-HCO3 (-) cotransporter as well as of Na(+),K(+)-ATPase. These effects are mediated by PPAR γ -induced nongenomic transactivation of the epidermal growth factor receptor and downstream extracellular signal-regulated kinases (ERK).
    PPAR Research 01/2013; 2013:628628. · 2.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Individuals with Type 2 diabetes mellitus suffer from a higher incidence of coronary heart disease (CHD) compared with those without diabetes. The mechanisms for the increased CHD in diabetic patients are multifactorial, including endothelial dysfunction, vessel wall modification, hyperglycemic toxicity, oxidative stress and inflammation, and insulin resistance. Moreover, multifactorial intervention, other than glycemic control alone, is recognized as the promising strategy for diabetic patients with CHD. In this review, the roles of the major contributors to the development of CHD and the comprehensive management strategies dealing with diabetes mellitus are focused upon.
    Expert Review of Cardiovascular Therapy 08/2012; 10(8):1051-60.