Article

GI262570, a peroxisome proliferator-activated receptor gamma agonist, changes electrolytes and water reabsorption from the distal nephron in rats

Department of Molecular Pharmacology, GlaxoSmithKline, Inc., Five Moore Drive, Research Triangle Park, NC 27709, USA.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.86). 03/2005; 312(2):718-25. DOI: 10.1124/jpet.104.074088
Source: PubMed

ABSTRACT Peroxisome proliferator-activated receptor-gamma (PPARgamma) agonists have been shown to have significant therapeutic benefits such as desirable glycemic control in type 2 diabetic patients; however, these agents may cause fluid retention in susceptible individuals. Since PPARgamma is expressed selectively in distal nephron epithelium, we studied the mechanism of PPARgamma agonist-induced fluid retention using male Sprague-Dawley rats treated with either vehicle or GI262570 (farglitazar), a potent PPARgamma agonist. GI262570 (20 mg/kg/day) induced a plasma volume expansion. The plasma volume expansion was accompanied by a small but significant decrease in plasma potassium concentration. Small but significant increases in plasma sodium and chloride concentrations were also observed. These changes in serum electrolytes suggested an activation of the renal mineralocorticoid response system; however, GI262570-treated rats had lower plasma levels of aldosterone compared with vehicle-treated controls. mRNA levels for a group of genes involved in distal nephron sodium and water absorption are changed in the kidney medulla with GI262570 treatment. In addition, due to a possible rebound effect on epithelial sodium channel (ENaC) activity, a low dose of amiloride did not prevent GI262570-induced fluid retention. On the contrary, the rebound effect after amiloride treatment potentiated GI262570-induced plasma volume expansion. This is at least partially due to a synergistic effect of GI262570 and the rebound from amiloride treatment on ENaCalpha expression. In summary, our current data suggest that GI262570 can increase water and sodium reabsorption in distal nephron by stimulating the ENaC and Na,K-ATPase system. This may be an important mechanism for PPARgamma agonist-induced fluid retention.

0 Followers
 · 
90 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background/Aims: Thiazolidinediones (TZDs, like rosiglitazone (RGZ)) are peroxisome proliferator-activated receptor γ (PPARγ) agonists used to treat type 2 diabetes. Clinical limitations include TZD-induced fluid retention and body weight (BW) increase, which are inhibited by amiloride, an epithelial-sodium channel (ENaC) blocker. RGZ-induced fluid retention is maintained in mice with αENaC knockdown in the collecting duct (CD). Since ENaC in the connecting tubule (CNT) rather than in CD appears to be critical for normal NaCl retention, we aimed to further explore the role of ENaC in CNT in RGZ-induced fluid retention. Methods: Mice with conditional inactivation of αENaC in both CNT and CD were used (αENaC lox/lox AQP2-Cre; 'αENaC-CNT/CD-KO') and compared with littermate controls (αENaC lox/lox mice; 'WT'). BW was monitored and total body water (TBW) and extracellular fluid volume (ECF) were determined by bioelectrical impedance spectroscopy (BIS) before and after RGZ (320 mg/kg diet for 10 days). Results: On regular NaCl diet, αENaC-CNT/CD-KO had normal BW, TBW, ECF, hematocrit, and plasma Na(+), K(+), and creatinine, associated with an increase in plasma aldosterone compared with WT. Challenging αENaC-CNT/CD-KO with a low NaCl diet unmasked impaired NaCl and K homeostasis, consistent with effective knockdown of αENaC. In WT, RGZ increased BW (+6.1%), TBW (+8.4%) and ECF (+10%), consistent with fluid retention. These changes were significantly attenuated in αENaC-CNT/CD-KO (+3.4, 1.3, and 4.3%). Conclusion: Together with the previous studies, the current results are consistent with a role of αENaC in CNT in RGZ-induced fluid retention, which dovetails with the physiological relevance of ENaC in this segment. © 2014 S. Karger AG, Basel.
    12/2014; DOI:10.1159/000370254
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Much concern has arisen regarding critical adverse effects of thiazolidinediones (TZDs), including rosiglitazone and pioglitazone, on cardiac tissue. Although TZD-induced cardiac hypertrophy (CH) has been attributed to an increase in plasma volume or a change in cardiac nutrient preference, causative roles have not been established. To test the hypothesis that volume expansion directly mediates rosiglitazone-induced CH, mice were fed a high-fat diet with rosiglitazone, and cardiac and metabolic consequences were examined. Rosiglitazone treatment induced volume expansion and CH in wild-type and PPARγ heterozygous knockout (Pparg(+/-)) mice, but not in mice defective for ligand binding (Pparg(P465L/+)). Cotreatment with the diuretic furosemide in wild-type mice attenuated rosiglitazone-induced CH, hypertrophic gene reprogramming, cardiomyocyte apoptosis, hypertrophy-related signal activation, and left ventricular dysfunction. Similar changes were observed in mice treated with pioglitazone. The diuretics spironolactone and trichlormethiazide, but not amiloride, attenuated rosiglitazone effects on volume expansion and CH. Interestingly, expression of glucose and lipid metabolism genes in the heart was altered by rosiglitazone, but these changes were not attenuated by furosemide cotreatment. Importantly, rosiglitazone-mediated whole-body metabolic improvements were not affected by furosemide cotreatment. We conclude that releasing plasma volume reduces adverse effects of TZD-induced volume expansion and cardiac events without compromising TZD actions in metabolic switch in the heart and whole-body insulin sensitivity.
    American Journal Of Pathology 11/2013; DOI:10.1016/j.ajpath.2013.10.020 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background/Aims: Thiazolidinediones (TZDs), such as rosiglitazone or pioglitazone, are peroxisome proliferator-activated receptor gamma (PPARγ) agonists currently used in the treatment of type 2 diabetes. However, their clinical applicability is limited by common and severe side effects including strong water retention, edema and cardiac stroke. The precise mechanisms leading to these disorders are not clearly understood and remain controversial. While the nature of the disorders due to TZDs points to an increase in ENaC-mediated sodium reabsorption in the aldosterone-sensitive distal nephron, some studies suggested that this channel was not targeted by PPARγ agonists. Methods: Mouse cortical collecting duct cells were incubated in different types of culture medium and treated with or without rosiglitazone. Transepithelial Na(+) current was measured and the changes in SGK and Nedd4 expression were determined by immunoblotting. Results: Herein we demonstrate that rosiglitazone stimulates the amiloride-sensitive transepithelial sodium current in Collecting Duct Principal Cells after 3h and 24h treatment. This activation was dependent of both serum and insulin in culture medium and was mediated by SGK1/Nedd4-2 pathway stimulation. In these conditions, rosiglitazone induced SGK1 expression, Nedd4-2 phosphorylation and thus abolished ubiquitylation and internalization of ENaC channels. This mechanism explains most of the side effects of thiazolidinediones previously observed in humans and animals. Conclusion: Our data show an increase in transepithelial sodium amiloride-sensitive current induced by a PPARγ agonist in presence of serum and insulin, thus confirming some in-vitro and in-vivo experiments while providing explanations for previous conflicting findings. © 2014 S. Karger AG, Basel.
    Cellular Physiology and Biochemistry 02/2014; 33(3):581-593. DOI:10.1159/000358636 · 3.55 Impact Factor