Article

Characterization of QTL with Major Effects on Fatness and Growth on Mouse Chromosome 2

Animal Science, University of Nebraska, Lincoln, NE 68583-0908, USA. .
Obesity research (Impact Factor: 4.95). 10/2004; 12(9):1408-20. DOI: 10.1038/oby.2004.177
Source: PubMed

ABSTRACT To isolate and characterize a region on mouse chromosome 2 harboring quantitative trait loci with large influences on growth and fatness.
A congenic line [M16i.B6-(D2Mit306-D2Mit52); MB2] was created using the polygenic obese M16i selection line as the recipient for an approximately 38-centimorgan region from C57BL/6J. Males and females from M16i and MB2 were compared for body weight, body composition, feed consumption, and additional traits at 6, 15, and 24 weeks. Interactions of genotype and environment (low and high dietary fat) were investigated. Males (8 weeks) were evaluated for fatty acid profiles in liver and for transcriptional profiles in liver and adipose.
Consequences of replacing M16i alleles with C57BL/6J alleles in MB2 were maximized at 15 weeks. MB2 mice were up to 15% lighter than M16i at this age, with no differences in feed consumption. As a percentage of body weight, MB2 had dramatically less epididymal (males) or perimetrial (females) fat (1.17% vs. 2.79% pooled across sex) and lower total lipids (16.1% vs. 23.3%) than M16i. Decreased adiposity in MB2 was not dependent on gender or diet. MB2 mice also had significant decreases in levels of leptin, insulin, and glucose, decreased de novo synthesis of hepatic fatty acid, and transcriptional changes for many genes both within, and external to, the congenic region.
Results confirm the presence and large effects of mouse chromosome 2 quantitative trait loci and further define their phenotypic consequences related to energy balance. The MB2 congenic line is a powerful resource for eventual identification of pathways and mutations within genes regulating predisposition to growth and obesity.

0 Followers
 · 
66 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The steroidogenic acute regulatory (StAR) protein-related lipid transfer (START) domain proteins constitute a family of evolutionarily conserved and widely expressed proteins that have been implicated in lipid transport, metabolism, and signaling. The 15 well-characterized mammalian START domain-containing proteins are grouped into six subfamilies. The START domain containing 7 mRNA encodes StarD7, a member of the StarD2/phosphatidylcholine transfer protein (PCTP) subfamily, which was first identified as a gene overexpressed in a choriocarcinoma cell line. Recent studies show that the StarD7 protein facilitates the delivery of phosphatidylcholine to the mitochondria. This review summarizes the latest advances in StarD7 research, focusing on the structural and biochemical features, protein-lipid interactions, and mechanisms that regulate StarD7 expression. The implications of the role of StarD7 in cell proliferation, migration, and differentiation are also discussed.
    International Journal of Molecular Sciences 03/2013; 14(3):6170-6186. DOI:10.3390/ijms14036170 · 2.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mitochondrial ATP synthase, subunit c, isoform 3 gene (Atp5g3) encodes subunit 9, the subunit of the multisubunit enzyme that catalyzes ATP synthesis during oxidative phosphorylation in mitochondria. According to the Ensembl database, Atp5g3 in mice is located on chromosome 2 between 73746504 and 73749383 bp, within the genomic regions of two sets of quantitative trait loci - alcohol preference and body weight. Both of those traits are more influenced by epigenetic factors than many other traits are. Using currently available phenotype and gene expression profiles from the GeneNetwork database, we obtained correlations between Atp5g3 and alcoholism- and obesity-relevant phenotypes. The correlation in expression levels between Atp5g3 and each of its 12 partner genes in the molecular interaction are different in various tissues and genes. Transcriptome mapping indicated that Atp5g3 is differentially regulated in the hippocampus, cerebellum, and liver. Owing to a lack of known polymorphisms of Atp5g3 among three relevant mouse strains, C57BL/6J (B6), DBA/2J (D2), and BALB/ cJ, the molecular mechanism for the connection between Atp5g3 and alcoholism and body weight requires further investigation.
    Genetics and molecular research: GMR 01/2013; 12(3):3662-3674. DOI:10.4238/2013.September.18.1 · 0.85 Impact Factor