Article

Molecular mechanisms of low intensity pulsed ultrasound in human skin fibroblasts

Department of Chemistry, Universität Ulm, Ulm, Baden-Württemberg, Germany
Journal of Biological Chemistry (Impact Factor: 4.6). 01/2005; 279(52):54463-9. DOI: 10.1074/jbc.M404786200
Source: PubMed

ABSTRACT Soluble factors such as polypeptide growth factors, mitogenic lipids, inflammatory cytokines, and hormones are known regulators of cell proliferation. However, the effect of mechanical stimuli on cell proliferation is less well understood. Here we examined the effect of low intensity pulsed ultrasound (US), which is used to promote wound healing, on the proliferation of primary human foreskin fibroblasts and the underlying signaling mechanisms. We show that a single 6-11-min US stimulation increases bromodeoxyuridine incorporation. In addition, an increase in the total cell number is observed after sequential US stimulation. US induced stress fiber and focal adhesion formation via activation of Rho. We further observed that US selectively induced activation of extracellular signal-regulated kinase (ERK) 1/2. Inhibition of Rho-associated coiled-coil-containing protein kinase (ROCK) prevented US-induced ERK1/2 activation, demonstrating that the Rho/ROCK pathway is an upstream regulator of ERK activation in response to US. Consequently, activation of ROCK and MEK-1 was required for US-induced DNA synthesis. Finally, an integrin beta(1) blocking antibody as well as a RGD peptide prevented US-induced DNA synthesis. In addition, US slightly increased phosphorylation of Src at Tyr(416), and Src activity was found to be required for ERK1/2 activation in response to US. In conclusion, our data demonstrate for the first time that US promotes cell proliferation via activation of integrin receptors and a Rho/ROCK/Src/ERK signaling pathway.

Download full-text

Full-text

Available from: Max Bachem, Jul 06, 2015
0 Followers
 · 
95 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that MHz frequency ultrasound causes contraction of the carotid artery in vitro. We now extend this investigation to equine mesenteric arteries and investigate the cellular mechanisms. In vitro exposure of the large lateral cecal mesenteric artery to 4-min periods of 3.2 MHz continuous wave ultrasound at acoustic powers up to 145 mW induced reversible repeatable contraction. The magnitude of the response was linearly dependent on acoustic power and, at 145 mW, the mean increase in wall stress was 0.020 ± 0.017 mN/mm(2) (n = 34). These results are consistent with our previous study and the effect was hypothesised to be thermally mediated. A 2°C temperature rise produced an increase in intracellular calcium, measured by Fluo-4 fluorescence. Inhibition of the inward-rectifier potassium ion channel with BaCl(2) (4 μM) increased the response to ultrasound by 55% ± 49%, indicating a similar electrophysiologic basis to the response to mild hyperthermia. In small mesenteric arteries (0.5-1.0 mm diameter) mounted in a perfusion myograph, neither ultrasound exposure nor heating produced measureable vasoconstriction or a rise in intracellular calcium and we conclude that temperature-sensitive channels are absent or inactive in these small vessels. It, therefore, appears that response of blood vessels to ultrasound depends not only on the thermal properties of the vessels and surrounding tissues but also on the electrophysiology of the smooth muscle cells.
    Ultrasound in medicine & biology 11/2011; 38(1):152-61. DOI:10.1016/j.ultrasmedbio.2011.10.017
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Physiotherapists consider ultrasound an indispensable tool, which is commonly employed in clinical practice as a treatment aid for musculoskeletal dysfunctions. The aim of our study has been to analyze fibroblast cell structures following low-intensity pulsed ultrasonic irradiation. Fibroblast cell cultures irradiated with ultrasound were analyzed through electron microscopy to determine an ideal irradiation beam that preserved cell morphology and integrity. Analysis by fluorescence microscopy and transmission electron microscopy was used to follow morphological changes of the nucleus and cytoskeleton following different ultrasound irradiation intensities. According to the parameters used in the pulsed irradiation of fibroblast cultures, control over the intensity employed is fundamental to the optimal use of therapeutic ultrasound. Cell cultures submitted to low-intensity pulsed ultrasonic irradiation (0.2-0.6 W/cm2) at 10% (1:9 duty cycle) and 20% (2:8 duty cycle) maintained shape and cellular integrity, with little damage. In the group irradiated with an intensity of 0.8 W/cm2, a loss of adhesion was observed along with an alteration in the morphology of some cells at an intensity of 1.0 W/cm2, which resulted in the presence of cellular fragments and a decrease of adhering cells. In cells irradiated at 2.0 W/cm2, there was a complete loss of adhesion and aggregation of cellular fragments. The present study confirms that biophysical properties of pulsed ultrasound may accelerate proliferation processes in different biological tissues.
    Cell Biology International 08/2008; 32(10):1329-35. DOI:10.1016/j.cellbi.2008.07.016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To clarify the detailed molecular mechanism underlying cellular responses to nonthermal low-intensity pulsed ultrasound (LIPUS), gene expression patterns and genetic networks in human lymphoma U937 cells were examined using global-scale microarrays and computational gene expression analysis tools. Six hours after LIPUS treatment (0.3W/cm(2) for 1min), apoptosis (14+/-3.8%, mean+/-SD) without no cell lysis was observed. Of 22,283 probe sets analyzed, LIPUS down-regulated 193 genes and up-regulated 201 genes by >1.5-fold. For down-regulated genes, the significant genetic network D was associated with cellular growth and proliferation, gene expression, or cellular development. For up-regulated genes, the significant genetic network U was associated with cellular movement, cell morphology, and cell death. The present results indicate that LIPUS affects the expression of many genes and will provide novel insight into the biomolecular mechanisms of LIPUS in therapeutic application for cancer therapy.
    Cancer letters 07/2008; 270(2):286-94. DOI:10.1016/j.canlet.2008.05.018