Article

Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library.

Center for Cancer Systems Biology and Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
Genome Research (Impact Factor: 13.85). 11/2004; 14(10B):2162-8. DOI: 10.1101/gr.2505604
Source: PubMed

ABSTRACT The recently completed Caenorhabditis elegans genome sequence allows application of high-throughput (HT) approaches for phenotypic analyses using RNA interference (RNAi). As large phenotypic data sets become available, "phenoclustering" strategies can be used to begin understanding the complex molecular networks involved in development and other biological processes. The current HT-RNAi resources represent a great asset for phenotypic profiling but are limited by lack of flexibility. For instance, existing resources do not take advantage of the latest improvements in RNAi technology, such as inducible hairpin RNAi. Here we show that a C. elegans ORFeome resource, generated with the Gateway cloning system, can be used as a starting point to generate alternative HT-RNAi resources with enhanced flexibility. The versatility inherent to the Gateway system suggests that additional HT-RNAi libraries can now be readily generated to perform gene knockdowns under various conditions, increasing the possibilities for phenome mapping in C. elegans.

1 Follower
 · 
107 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The level of stem cell proliferation must be tightly controlled for proper development and tissue homeostasis. Multiple levels of gene regulation are often employed to regulate stem cell proliferation to ensure that the amount of proliferation is aligned with the needs of the tissue. Here we focus on proteasome-mediated protein degradation as a means of regulating the activities of proteins involved in controlling the stem cell proliferative fate in the C. elegans germ line. We identify five potential E3 ubiquitin ligases, including the RFP-1 RING finger protein, as being involved in regulating proliferative fate. RFP-1 binds to MRG-1, a homologue of the mammalian chromodomain-containing protein MRG15 (MORF4L1), which has been implicated in promoting the proliferation of neural precursor cells. We find that C. elegans with reduced proteasome activity, or that lack RFP-1 expression, have increased levels of MRG-1 and a shift towards increased proliferation in sensitized genetic backgrounds. Likewise, reduction of MRG-1 partially suppresses stem cell overproliferation. MRG-1 levels are controlled independently of the spatially regulated GLP-1/Notch signalling pathway, which is the primary signal controlling the extent of stem cell proliferation in the C. elegans germ line. We propose a model in which MRG-1 levels are controlled, at least in part, by the proteasome, and that the levels of MRG-1 set a threshold upon which other spatially regulated factors act in order to control the balance between the proliferative fate and differentiation in the C. elegans germ line. © 2015. Published by The Company of Biologists Ltd.
    Development 01/2015; 142(2):291-302. DOI:10.1242/dev.115147 · 6.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulated choice between cell fate maintenance and differentiation provides decision points in development to progress toward more restricted cell fates or to maintain the current one. Caenorhabditis elegans embryogenesis follows an invariant cell lineage where cell fate is generally more restricted upon each cell division. EMS is a progenitor cell in the four-cell embryo that gives rise to the endomesoderm. We recently found that when ubiquitin-mediated protein degradation is compromised, the anterior daughter of EMS, namely MS, reiterates the EMS fate. This observation demonstrates an essential function of ubiquitin-mediated protein degradation in driving the progression of EMS-to-MS differentiation. Here we report a genome-wide screen of the ubiquitin pathway and extensive lineage analyses. The results suggest a broad role of E3 ligases in driving differentiation progression. First, we identified three substrate-binding proteins for two Cullin–RING ubiquitin ligase (CRL) E3 complexes that promote the progression from the EMS fate to MS, namely LIN-23/β-TrCP and FBXB-3 for the CRL1/SCF complex and ZYG-11/ZYG-11B for the CRL2 complex. Genetic analyses suggest these E3 ligases function through a multifunctional protein OMA-1 and the endomesoderm lineage specifier SKN-1 to drive differentiation. Second, we found that depletion of components of the CRL1/SCF complex induces fate reiteration in all major founder cell lineages. These data suggest that regulated choice between self-renewal and differentiation is widespread during C. elegans embryogenesis as in organisms with regulative development, and ubiquitin-mediated protein degradation drives the choice towards differentiation. Finally, bioinformatic analysis of time series gene expression data showed that expression of E3 genes is transiently enriched during time windows of developmental stage transitions. Transcription factors show similar enrichment, but not other classes of regulatory genes. Based on these findings we propose that ubiquitin-mediated protein degradation, like many transcription factors, function broadly as regulators driving developmental progression during embryogenesis in C. elegans.
    Developmental Biology 12/2014; DOI:10.1016/j.ydbio.2014.12.009 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In epithelial collective migration, leader and follower cells migrate while maintaining cell-cell adhesion and tissue polarity. We have identified a conserved protein and interactors required for maintaining cell adhesion during a simple collective migration in the developing C. elegans male gonad. LINKIN is a previously uncharacterized, transmembrane protein conserved throughout Metazoa. We identified seven atypical FG-GAP domains in the extracellular domain, which potentially folds into a β-propeller structure resembling the α-integrin ligand-binding domain. C. elegans LNKN-1 localizes to the plasma membrane of all gonadal cells, with apical and lateral bias. We identified the LINKIN interactors RUVBL1, RUVBL2, and α-tubulin by using SILAC mass spectrometry on human HEK 293T cells and testing candidates for lnkn-1-like function in C. elegans male gonad. We propose that LINKIN promotes adhesion between neighboring cells through its extracellular domain and regulates microtubule dynamics through RUVBL proteins at its intracellular domain.
    eLife Sciences 12/2014; 3. DOI:10.7554/eLife.04449 · 8.52 Impact Factor

Full-text (2 Sources)

Download
8 Downloads
Available from
Aug 25, 2014