Regulation of the cyclin A1 protein is associated with its differential subcellular localization in hematopoietic and leukemic cells

Department of Genetics and Development, Columbia University, New York, New York, United States
Oncogene (Impact Factor: 8.56). 01/2005; 23(56):9082-9. DOI: 10.1038/sj.onc.1208090
Source: PubMed

ABSTRACT An important role of the cell cycle regulatory protein cyclin A1 in the development of acute myeloid leukemia (AML) was previously demonstrated in a transgenic mouse model. We have now turned our attention to study specific aspects of the activity and subcellular distribution of cyclin A1 using bone marrow samples from normal donors and patients with AML, as well as leukemic cell lines. We show that the localization of cyclin A1 in normal hematopoietic cells is nuclear, whereas in leukemic cells from AML patients and cell lines, it is predominantly cytoplasmic. In leukemic cell lines treated with all-trans retinoic acid (ATRA), cyclin A1 localized to the nucleus. Further, there was a direct interaction between cyclin A1 and cyclin-dependent kinase 1, as well as a major ATRA receptor, RARalpha, in ATRA-treated cells but not in untreated leukemic cells. Our results indicate that the altered intracellular distribution of cyclin A1 in leukemic cells correlates with the status of the leukemic phenotype.

  • Article: Cyclin A1
    AfCS-Nature Molecule Pages 01/2006; DOI:10.1038/mp.a000716.01
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding of molecular mechanisms underlying the effects of cell cycle proteins in response to the chemotherapeutic agents is of great importance for improving the efficacy of targeted therapeutics and overcoming resistance to chemotherapeutic agents. Staurosporine and tumor necrosis factor alpha (TNFalpha) are the therapeutic agents that inhibit tumor cell growth by inducing cell death. Staurosporine induces apoptosis through the intrinsic pathway, while TNFalpha trigger the cell death via the extrinsic apoptotic pathway. We have previously demonstrated that the cell cycle regulatory protein, cyclin A1 played an important role in the development of acute myeloid leukemia (AML), and cyclin A1 expression correlated with disease characteristics and patient outcome in leukemia. However, it remains unknown how cyclin A1 expression is regulated in leukemic cells treated with the therapeutic agents. Here, we demonstrate that cyclin A1 protein is regulated by proteasome-mediated ubiquitination and degradation in untreated U-937 cells. Interestingly, ubiquitination- and proteasomal-mediated degradation of cyclin A1 is prevented in cells treated with staurosporine or TNFalpha. Induction of apoptosis in U-937 cells by staurosporine or TNFalpha resulted in an increase in cyclin A1 protein expression, which correlated well with cyclin A1 protein modification and the activation of caspase-3. Blocking caspases activity by Z-VAD-FMK had no effect on the increased cyclin A1 expression, suggesting that cyclin A1 might be regulated by caspase-3 independent pathways. We further propose that CDC25C may be associated with cyclin A1 protein modification in response to staurosporine or TNFalpha treatment. Our results suggest that cyclin A1 protein is stabilized via post-transcriptional modification in response to apoptosis induced by staurosporine or TNFalpha.
    Molecular and Cellular Biochemistry 01/2009; 320(1-2):115-24. DOI:10.1007/s11010-008-9913-3 · 2.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alterations in cellular pathways related to both endocrine and vascular endothelial growth factors (VEGF) may contribute to breast cancer progression. Inhibition of the elevated levels of these pathways is associated with clinical benefits. However, molecular mechanisms by which endocrine-related pathways and VEGF signalling cooperatively promote breast cancer progression remain poorly understood. In the present study, we show that the A-type cyclin, cyclin A1, known for its important role in the initiation of leukemia and prostate cancer metastasis, is highly expressed in primary breast cancer specimens and metastatic lesions, in contrasting to its barely detectable expression in normal human breast tissues. There is a statistically significant correlation between cyclin A1 and VEGF expression in breast cancer specimens from two patient cohorts (p<0.01). Induction of cyclin A1 overexpression in breast cancer cell line MCF-7 results in an enhanced invasiveness and a concomitant increase in VEGF expression. In addition, there is a formation of protein-protein complexes between cyclin A1 and estrogen receptor ER-α cyclin A1 overexpression increases ER-α expression in MCF-7 and T47D cells. In mouse tumor xenograft models in which mice were implanted with MCF-7 cells that overexpressed cyclin A1 or control vector, cyclin A1 overexpression results in an increase in tumor growth and angiogenesis, which is coincident with an enhanced expression of VEGF, VEGFR1 and ER-α Our findings unravel a novel role for cyclin A1 in growth and progression of breast cancer, and suggest that multiple cellular pathways, including cell cycle regulators, angiogenesis and estrogen receptor signalling, may cooperatively contribute to breast cancer progression.
    PLoS ONE 08/2013; 8(8):e72210. DOI:10.1371/journal.pone.0072210 · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014