Lung effects during a generalized Shwartzman reaction and therapeutic intervention with dexamethasone or vitamin E.

Department of Medical Countermeasures, Divison of NBC Defence, Swedish Defence Research Agency, Umeå, Sweden.
Shock (Impact Factor: 2.73). 12/2004; 22(5):482-90. DOI: 10.1097/01.shk.0000142254.38630.36
Source: PubMed

ABSTRACT We investigated if a two-hit shock model, commonly referred to as generalized Shwartzman reaction (GSR), can prime for indirect acute respiratory distress syndrome (ARDS) in mice. The GSR was provoked in C57BL/6 mice by two consecutive i.p. injections of 100 microg lipopolysaccharide (LPS) at t = 0 and t = 20 h. These mice demonstrated a dramatic decrease in respiratory capacity and 80% mortality after the second injection. No such effect was observed when LPS was given as a single 200 microg dose at t = 0. Increased expression of proinflammatory cytokines in serum (interleukin-1beta, interleukin-6 and interferon-gamma), lung neutrophilia, and edema formation were observed in mice injected with one dose of LPS, but notably, mice exposed twice did not further increase their inflammatory response. Early treatment 1 h after the first LPS injection (t = 1 h) with either dexamethasone (10 mg/kg) or vitamin E (50 mg/kg) improved respiratory function and down-modulated the induction of proinflammatory cytokines in serum. In conclusion, mice with a generalized Shwartzman reaction exhibited features resembling some aspects of the pathophysiology in septic ARDS, i.e., neutrophilic inflammation, edema formation, impaired respiratory capacity, and mortality. Our data indicate that a systemic cytokine response and lung neutrophilia may prime for the GSR but that other mechanisms account for the rapid decline in lung function after the second challenge. We suggest that this model can be used for studies of pathogenesis and therapeutic prevention of acute respiratory failure.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monocytes and macrophages play pivotal roles in inflammation and homeostasis. Recent studies suggest that dynamic programing of macrophages and monocytes may give rise to distinct “memory” states. Lipopolysaccharide (LPS), a classical pattern recognition molecule, dynamically programs innate immune responses. Emerging studies have revealed complex dynamics of cellular responses to LPS, with high doses causing acute, resolving inflammation, while lower doses are associated with low-grade and chronic non-resolving inflammation. These phenomena hint at dynamic complexities of intra-cellular signaling circuits downstream of the Toll-like receptor 4 (TLR4). In this review, we examine pathological effects of varying LPS doses with respect to the dynamics of innate immune responses and key molecular regulatory circuits responsible for these effects.
    Frontiers in Immunology 01/2015; 5. DOI:10.3389/fimmu.2014.00680
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sepsis mortality varies dramatically in individuals of variable immune conditions, with poorly defined mechanisms. This phenomenon complements the hypothesis that innate immunity may adopt rudimentary memory, as demonstrated in vitro with endotoxin priming and tolerance in cultured monocytes. However, previous in vivo studies only examined the protective effect of endotoxin tolerance in the context of sepsis. In sharp contrast, we report herein that pre-conditioning with super-low or low dose endotoxin lipopolysaccharide (LPS) cause strikingly opposite survival outcomes. Mice pre-conditioned with super-low dose LPS experienced severe tissue damage, inflammation, increased bacterial load in circulation, and elevated mortality when they were subjected to cecal-ligation and puncture (CLP). This is in contrast to the well-reported protective phenomenon with CLP mice pre-conditioned with low dose LPS. Mechanistically, we demonstrated that super-low and low dose LPS differentially modulate the formation of neutrophil extracellular trap (NET) in neutrophils. Instead of increased ERK activation and NET formation in neutrophils pre-conditioned with low dose LPS, we observed significantly reduced ERK activation and compromised NET generation in neutrophils pre-conditioned with super-low dose LPS. Collectively, our findings reveal a mechanism potentially responsible for the dynamic programming of innate immunity in vivo as it relates to sepsis risks.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipopolysaccharide (LPS) induces host inflammatory responses and tissue injury and has been implicated in the pathogenesis of various age-related diseases such as acute respiratory distress syndrome, vascular diseases, and periodontal disease. Antioxidants, particularly vitamin E, have been shown to suppress oxidative stress induced by LPS, but the previous studies with different vitamin E isoforms gave inconsistent results. In the present study, the protective effects of α- and γ-tocopherols and α- and γ-tocotrienols on the oxidative stress induced by LPS against human lung carcinoma A549 cells were studied. They suppressed intracellular reactive oxygen formation, lipid peroxidation, induction of inflammatory mediator cytokines, and cell death. Tocopherols were incorporated into cultured cells much slower than tocotrienols but could suppress LPS-induced oxidative stress at much lower intracellular concentration than tocotrienols. Considering the bioavailability, it was concluded that α-tocopherol may exhibit the highest protective capacity among the vitamin E isoforms against LPS-induced oxidative stress.
    01/2013; 1(1):97-103. DOI:10.1016/j.redox.2012.10.002