Experimental study on the regeneration of peripheral nerve gaps through polyglycolic acid-collagen (PGA-collagen) tube

Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara cho, Sakyo-ku, Kyoto 606-8507, Japan.
Brain Research (Impact Factor: 2.84). 12/2004; 1027(1-2):18-29. DOI: 10.1016/j.brainres.2004.08.040
Source: PubMed


We have developed a bioabsorbable polyglycolic acid (PGA) tube filled with collagen sponge (PGA-collagen tube) as a nerve connective guide, and compared its effectiveness with that of autograft in terms of nerve regeneration across a gap. The PGA-collagen tube was implanted into 24 beagle dogs across a 15-mm gap in the left peroneal nerve. The right peroneal nerve was reconstructed with the autograft harvested from the left side, as a control. After the surgery, the connective tissue extended from both cut ends in the PGA-collagen tube and connected again at the center. Pathologically, the collagen sponge in the tube provided adequate scaffolding for nerve tissue extension, and the nerve tissue reconnected within 3 weeks. Electrophysiologically, muscle-evoked potentials (MEPs) and compound nerve action potentials (CNAPs) were detected 18 days after the surgery. For up to 6 months postsurgery, CNAPs and somatosensory-evoked potentials (SEPs) on the PGA-collagen side had a shorter latency and larger peak voltage than those on the autograft side. The myelinated axons on the PGA side were larger in diameter than those on the autograft side. It is suggested that the PGA-collagen tube has the potential to be an effective alternative to conventional autografting for the repair of some peripheral nerve defects.

10 Reads
  • Source
    • "Rapid developments in tissue engineering give the opportunity for the design and creation of artificial implants for different purposes. For more than 30 years intensive research on various artificial materials for the nerve guide channels has been conducted [6] [7] [8] [9] [10] [11] [12] [13]. As a result of this research several polymer implants in the form of tubes have been put into clinical practice. "

  • Source
    • "Artificial nerve conduits constructed of numerous polymeric materials such as silicone (Lundborg et al., 1982), collagen (Archibald et al., 1995), chitosan (Freier et al., 2005; Ao et al., 2006), hyaluronic acid (Wang et al., 1998), poly(caprolactone) (PCL), poly(glycolic acid) (PGA), and poly(lactic acid) (PLA) (Nakamura et al., 2004; Yoshitani et al., 2007) have been investigated. Recently, an artificial nerve conduit composed of poly(lactic-co-glycolic acid) (PLGA) mesh filled with animal-derived collagen has been put into clinical use and has shown good performance (Nakamura et al., 2004). "
    [Show abstract] [Hide abstract]
    ABSTRACT: We developed a microfibrous poly(L-lactic acid) (PLLA) nerve conduit with a three-layered structure to simultaneously enhance nerve regeneration and prevent adhesion of surrounding tissue. The inner layer was composed of PLLA microfiber containing 25% elastin-laminin mimetic protein (AG73-(VPGIG)30) that promotes neurite outgrowth. The thickest middle layer was constructed of pure PLLA microfibers that impart the large mechanical strength to the conduit. A 10% poly(ethylene glycol) was added to the outer layer to prevent the adhesion with the surrounding tissue. The AG73-(VPGIG)30 compositing of an elastin-like repetitive sequence (VPGIG)30 and a laminin-derived sequence (RKRLQVQLSIRT: AG73) was biosynthesized using Escherichia coli. The PLLA microfibrous conduits were fabricated using an electrospinning procedure. AG73-(VPGIG)30 was successfully mixed in the PLLA microfibers, and the PLLA/AG73-(VPGIG)30 microfibers were stable under physiological conditions. The PLLA/AG73-(VPGIG)30 microfibers enhanced adhesion and neurite outgrowth of PC12 cells. The electrospun microfibrous conduit with a three-layered structure was implanted for bridging a 2.0-cm gap in the tibial nerve of a rabbit. Two months after implantation, no adhesion of surrounding tissue was observed, and the action potential was slightly improved in the nerve conduit with the PLLA/AG73-(VPGIG)30 inner layer.
    Frontiers in Chemistry 07/2014; 2:52. DOI:10.3389/fchem.2014.00052
  • Source
    • "Presently, resectioned peripheral nerves can be clinically regenerated with nerve autografts and polyglycolic acid (PGA)-collagen tubes. As for regeneration of peroneal nerves of dogs, regenerated axons with nerve autografts were about 75% of normal nerves and regenerated axons with PGA tubes were about 80% [31]. In the present study, using HRP labeling we calculated that the regenerated axons comprised about 60% of the population at 6 months after surgery. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Bifocal distraction osteogenesis has been shown to be a reliable method for reconstructing segmental mandibular defects. However, there are few reports regarding the occurrence of inferior alveolar nerve regeneration during the process of distraction. Previously, we reported inferior alveolar nerve regeneration after distraction, and evaluated the regenerated nerve using histological and electrophysiological methods. In the present study, we investigated axons regenerated by bifocal distraction osteogenesis using retrograde transportation of horseradish peroxidase in the mandibles of dogs to determine their type and function. Using a bifocal distraction osteogenesis method, we produced a 10-mm mandibular defect, including a nerve defect, in 11 dogs and distracted using a transport disk at a rate of 1 mm/day. The regenerated inferior alveolar nerve was evaluated by retrograde transportation of HRP in all dogs at 3 and 6 months after the first operation. At 3 and 6 months, HRP-labeled neurons were observed in the trigeminal ganglion. The number of HRP-labeled neurons in each section increased, while the cell body diameter of HRP-labeled neurons was reduced over time. We found that the inferior alveolar nerve after bifocal distraction osteogenesis successfully recovered until peripheral tissue began to function. Although our research is still at the stage of animal experiments, it is considered that it will be possible to apply this method in the future to humans who have the mandibular defects.
    PLoS ONE 04/2014; 9(4):e94365. DOI:10.1371/journal.pone.0094365 · 3.23 Impact Factor
Show more