Article

Three novel single nucleotide polymorphisms (SNPs) of the CYP2B6 gene in Japanese individuals.

Department of Clinical Pharmaceutics, Tohoku Pharmaceutical University, Sendai, Japan.
Drug Metabolism and Pharmacokinetics (Impact Factor: 2.86). 05/2004; 19(2):155-8. DOI: 10.2133/dmpk.19.155
Source: PubMed

ABSTRACT We sequenced all exons and exon-intron junctions of the CYP2B6 gene from 200 Japanese individuals. We found three novel single nucleotide polymorphisms (SNPs) (1375A>G, 1427G>A and 1454A>T) causing amino acid substitutions (Met(459)Val, Gly(476)Asp and Gln(485)Leu in exon 9), respectively. The detected SNP was as follows: 1) SNP, 031226Hiratsuka01; GENE NAME, CYP2B6; ACCESSION NUMBER, AC023172; LENGTH, 25 base; 5'-CAGAACTTCTCCA/GTGGCCAGCCCCG-3'. 2) SNP, 031226Hiratsuka02; GENE NAME, CYP2B6; ACCESSION NUMBER, AC023172; LENGTH, 25 base; 5'-CCCAGGAGTGTGG/ATGTGGGCAAAAT-3'. 3) SNP, 031226Hiratsuka03; GENE NAME, CYP2B6; ACCESSION NUMBER, AC023172; LENGTH, 25 base; 5'-CCCCAACATACCA/TGATCCGCTTCCT-3'.

0 Bookmarks
 · 
124 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytochrome P450 (CYP) is a supergene family of metabolizing enzymes involved in the phase I metabolism of drugs and endogenous compounds. CYP oxidation often leads to inactive drug metabolites or to highly toxic or carcinogenic metabolites involved in adverse drug reactions (ADR). During the last decade, the impact of CYP polymorphism in various drug responses and ADR has been demonstrated. Fifty six percent of drugs involved in ADR are metabolized by polymorphic phase I metabolizing enzymes, 86% among them being CYP. Here, we review the major CYP polymorphic forms, their impact for drug response and current advances in molecular modeling of CYP polymorphism. We focus on recent studies exploring CYP polymorphism performed by the use of sequence- and/or protein structure- based computational approaches. The importance of understanding the molecular mechanisms related to CYP polymorphism and drug response at the atomic level is outlined.
    Journal of Molecular Biology 07/2013; DOI:10.1016/j.jmb.2013.07.010 · 3.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pharmacogenetics is the study of how interindividual variations in the DNA sequence of specific genes affect drug response. This article highlights current pharmacogenetic knowledge on important human drug-metabolizing cytochrome P450s (CYPs) to understand the large interindividual variability in drug clearance and responses in clinical practice. The human CYP superfamily contains 57 functional genes and 58 pseudogenes, with members of the 1, 2, and 3 families playing an important role in the metabolism of therapeutic drugs, other xenobiotics, and some endogenous compounds. Polymorphisms in the CYP family may have had the most impact on the fate of therapeutic drugs. CYP2D6, 2C19, and 2C9 polymorphisms account for the most frequent variations in phase I metabolism of drugs, since almost 80% of drugs in use today are metabolized by these enzymes. Approximately 5-14% of Caucasians, 0-5% Africans, and 0-1% of Asians lack CYP2D6 activity, and these individuals are known as poor metabolizers. CYP2C9 is another clinically significant enzyme that demonstrates multiple genetic variants with a potentially functional impact on the efficacy and adverse effects of drugs that are mainly eliminated by this enzyme. Studies into the CYP2C9 polymorphism have highlighted the importance of the CYP2C9*2 and *3 alleles. Extensive polymorphism also occurs in other CYP genes, such as CYP1A1, 2A6, 2A13, 2C8, 3A4, and 3A5. Since several of these CYPs (e.g., CYP1A1 and 1A2) play a role in the bioactivation of many procarcinogens, polymorphisms of these enzymes may contribute to the variable susceptibility to carcinogenesis. The distribution of the common variant alleles of CYP genes varies among different ethnic populations. Pharmacogenetics has the potential to achieve optimal quality use of medicines, and to improve the efficacy and safety of both prospective and currently available drugs. Further studies are warranted to explore the gene-dose, gene-concentration, and gene-response relationships for these important drug-metabolizing CYPs.
    Drug Metabolism Reviews 02/2009; 41(2):89-295. DOI:10.1080/03602530902843483 · 5.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identification of poor and rapid metabolizers for the category of drugs metabolized by cytochrome P450 2B6 (CYP2B6) is important for understanding the differences in clinical responses of drugs metabolized by this enzyme. This study reports the prevalence of poor and rapid metabolizers in North Indian population residing in the National Capital Territory. The prevalence of poor and rapid metabolizers was determined in the target population for the category of drugs metabolized by CYP2B6 by measuring plasma bupropion, a drug metabolized by CYP2B6, and its metabolite. Bupropion (75 mg) was administered to 107 volunteers, and the drug (bupropion) and its metabolite (hydroxybupropion) were determined simultaneously by LCMS/MS in the plasma. CYP2B6 activity was measured as hydroxybupropion/bupropion ratio, and volunteers were categorized as rapid or poor metabolizers on the basis of cutoff value of log (hydroxybupropion/bupropion). Significant differences were observed between the mean metabolite/drug ratio of rapid metabolizers (Mean = 0.59) and poor metabolizers (Mean = 0.26) with p<0.0001. Results indicate that 20.56% individuals in the target population were poor metabolizers for the category of drugs metabolized by CYP2B6. Cutoff value defined in this study can be used as a tool for evaluating the status of CYP2B6 using bupropion as a probe drug. The baseline information would be clinically useful before administering the drugs metabolized by this isoform.
    SpringerPlus 10/2012; 1:34. DOI:10.1186/2193-1801-1-34

Full-text (2 Sources)

Download
86 Downloads
Available from
Jun 1, 2014