Article

Inhibition of cardiac fibroblast proliferation and myofibroblast differentiation by resveratrol

The Ohio State University, Columbus, Ohio, United States
AJP Heart and Circulatory Physiology (Impact Factor: 4.01). 04/2005; 288(3):H1131-8. DOI: 10.1152/ajpheart.00763.2004
Source: PubMed

ABSTRACT Cardiac fibroblasts (CFs) regulate myocardial remodeling by proliferating, differentiating, and secreting extracellular matrix proteins. Prolonged activation of CFs leads to cardiac fibrosis and reduced myocardial contractile function. Resveratrol (RES) exhibits a number of cardioprotective properties; however, the possibility that this compound affects CF function has not been considered. The current study tests whether RES directly influences the growth and proliferation of CFs and differentiation to the hypersecretory myofibroblast phenotype. Pretreatment of CFs with RES (5-25 microM) inhibited basal and ANG II-induced extracellular signal-regulated kinase (ERK) 1/2 and ERK kinase activation. This inhibition by RES reduced basal proliferation and blocked ANG II-induced growth and proliferation of CFs in a concentration-dependent manner, as measured by [(3)H]leucine and [(3)H]thymidine incorporation, respectively. RES pretreatment attenuated ERK phosphorylation when CFs were stimulated with 0.2 nM epidermal growth factor (EGF), a concentration at which EGF-induced ERK activation over basal was similar to the phosphorylation induced by 100 nM ANG II. Akt phosphorylation in CFs was unaffected by treatment with either 100 nM ANG II or 25 microM RES. Pretreatment of CFs with RES also reduced both ANG II- and transforming growth factor-beta-induced CF differentiation to the myofibroblast phenotype, indicated by a reduction in alpha-smooth muscle actin expression and stress fiber organization in CFs. This study identifies RES as an anti-fibrotic agent in the myocardium by limiting CF proliferation and differentiation, two critical steps in the pathogenesis of cardiac fibrosis.

0 Bookmarks
 · 
132 Views
  • Cardiology 12/2014; 130(1):52-53. DOI:10.1159/000369127 · 2.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: High throughput screening of combinatorial chemical libraries is a powerful approach for identifying targeted molecules. The display of combinatorial peptide libraries on the surface of bacteriophages offers a rapid, economical way to screen billions of peptides for specific binding properties and has impacted fields ranging from cancer to vaccine development. As a modification to this approach, we have previously created a system that enables site-specific insertion of selenocysteine (Sec) residues into peptides displayed pentavalently on M13 phage as pIII coat protein fusions. In this study, we show the utility of selectively derivatizing these Sec residues through the primary amine of small molecules that target a G protein-coupled receptor, the adenosine A1 receptor, leaving the other coat proteins including the major coat protein pVIII unmodified. We further demonstrate that modified Sec-phage with multivalent bound agonist bind to cells and elicit downstream signaling with orders of magnitude greater potency than unconjugated agonist. Our results provide proof of concept of a system that can create hybrid, small-molecule containing peptide libraries and opens up new possibilities for phage-drug therapies.
    Bioconjugate Chemistry 02/2015; DOI:10.1021/acs.bioconjchem.5b00011 · 4.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Differentiation of cardiac fibroblasts (CFs) into myofibroblasts represents a key event in cardiac fibrosis that contributes to pathologic cardiac remodeling. However, regulation of this phenotypic transformation remains elusive. Here, we show that sirtuin-6 (SIRT6), a member of the sirtuin family of NAD(+)-dependent histone deacetylase, plays a role in the regulation of myofibroblast differentiation. SIRT6 expression was upregulated under pathologic conditions in angiotensin II (Ang II)-stimulated CFs and in myocardium of rat subject to abdominal aortic constriction surgery. SIRT6 depletion by RNA interference (small interfering RNA [siRNA]) in CFs resulted in increased cell proliferation and extracellular matrix deposition. Further examination of SIRT6-depleted CFs demonstrated significantly higher expression of α-smooth muscle actin (α-SMA), the classical marker of myofibroblast differentiation, and increased formation of focal adhesions. Notably, SIRT6 depletion further exacerbated Ang II-induced myofibroblast differentiation. Overexpression of SIRT6 restored α-SMA expression in SIRT6-depleted or Ang II-treated CFs. Moreover, SIRT6 depletion induced the DNA binding activity and transcriptional activity of nuclear factor κB (NF-κB). Importantly, using an NF-κB p65 siRNA or pyrrolidine dithiocarbamate, a specific inhibitor of NF-κB activity, reversed the expression of phenotypic markers of myofibroblasts. Our findings unravel a novel role of SIRT6 as a key modulator in the phenotypic conversion of CFs to myofibroblasts. Copyright © 2014 Elsevier Inc. All rights reserved.
    Translational Research 11/2014; DOI:10.1016/j.trsl.2014.08.008 · 4.04 Impact Factor