RAP--a putative RNA-binding domain.

Computational Molecular Biology Programme, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673.
Trends in Biochemical Sciences (Impact Factor: 13.52). 12/2004; 29(11):567-70. DOI: 10.1016/j.tibs.2004.09.005
Source: PubMed

ABSTRACT A novel approximately 60-residue domain has been identified in Homo sapiens MGC5297 and various other proteins in eukaryotes. Sequence searches reveal that the domain is particularly abundant in apicomplexans and is predicted to be involved in diverse RNA-binding activities.

  • [Show abstract] [Hide abstract]
    ABSTRACT: RNA-protein interactions influence many biological processes. Identifying the binding sites of RNA-binding proteins (RBPs) remains as one of the most fundamental and important challenges to the studies of such interactions. Capturing RNA and RBPs via chemical crosslinking allows stringent purification procedures that significantly remove the non-specific RNA and protein interactions. Two major types of chemical crosslinking strategies have been developed to date, i.e., UV-enabled crosslinking and enzymatic mechanism-based covalent capture. In this review, we compare such strategies and their current applications, with an emphasis on the technologies themselves rather than the biology that has been revealed. We hope such methods could benefit broader audience and also urge for the development of new methods to study RNA-RBP interactions.
    Genomics, proteomics & bioinformatics. 04/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mitochondrial genome relies heavily on post-transcriptional events for its proper expression, and misregulation of this process can cause mitochondrial genetic diseases in humans. Here, we report that a novel translational variant of Fas-activated serine/threonine kinase (FASTK) co-localizes with mitochondrial RNA granules and is required for the biogenesis of ND6 mRNA, a mitochondrial-encoded subunit of the NADH dehydrogenase complex (complex I). We show that ablating FASTK expression in cultured cells and mice results specifically in loss of ND6 mRNA and reduced complex I activity in vivo. FASTK binds at multiple sites along the ND6 mRNA and its precursors and cooperates with the mitochondrial degradosome to ensure regulated ND6 mRNA biogenesis. These data provide insights into the mechanism and control of mitochondrial RNA processing within mitochondrial RNA granules. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell reports. 02/2015;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Both strands of human mtDNA are transcribed in continuous, multigenic units that are cleaved into the mature rRNAs, tRNAs, and mRNAs required for respiratory chain biogenesis. We sought to systematically identify nuclear-encoded proteins that contribute to processing of mtRNAs within the organelle. First, we devised and validated a multiplex MitoString assay that quantitates 27 mature and precursor mtDNA transcripts. Second, we applied MitoString profiling to evaluate the impact of silencing each of 107 mitochondrial-localized, predicted RNA-binding proteins. With the resulting data set, we rediscovered the roles of recently identified RNA-processing enzymes, detected unanticipated roles of known disease genes in RNA processing, and identified new regulatory factors. We demonstrate that one such factor, FASTKD4, modulates the half-lives of a subset of mt-mRNAs and associates with mtRNAs in vivo. MitoString profiling may be useful for diagnosing and deciphering the pathogenesis of mtDNA disorders.
    Cell Reports 04/2014; 7(3). · 7.21 Impact Factor