Novel Role for Decay-Accelerating Factor in Coxsackievirus A21-Mediated Cell Infectivity

The Picornaviral Research Unit, Discipline of Immunology and Microbiology, Faculty of Health, The University of Newcastle, Level 3, David Maddison Clinical Sciences Building, Royal Newcastle Hospital, Newcastle, New South Wales 2300, Australia.
Journal of Virology (Impact Factor: 4.44). 12/2004; 78(22):12677-82. DOI: 10.1128/JVI.78.22.12677-12682.2004
Source: PubMed


Decay-accelerating factor (DAF) is involved in the cell membrane attachment of many human enteroviruses. Presently, further specific active roles of DAF in mediating productive cell infection and in the pathogenesis of natural enterovirus infection are poorly understood. In an attempt to more fully understand the role of DAF in lytic cell infection we examined the specific interactions of the prototype strain of coxsackievirus A21 (CVA21) with surface-expressed DAF. Investigations into discrete DAF-CVA21 interactions focused on viral binding; viral particle elution with respect to the parameters of time, temperature, and pH; and subsequent cell infection. Radiolabeled-virus binding assays revealed that peak elution of CVA21 from DAF occurred within 15 min of initial attachment and that the DAF-eluted virus increased in a linear fashion with respect to temperature and pH. CVA21 eluted from endogenous surface-expressed DAF was highly infectious, in contrast to CVA21 eluted from intercellular adhesion molecule 1 (ICAM-1), which retained little to no infectivity. Using an adenovirus transduction system, we demonstrate that CVA21 can remain infectious for up to 24 h after DAF binding and is capable of initiating a multicycle lytic infection upon delayed ICAM-1 surface expression. Taken together, the data suggest that a major role of DAF in cell infection by the prototype strain of CVA21 is to provide membrane concentration of infectious virions, effectively increasing viral interactions with endogenous or induced ICAM-1.

Download full-text


Available from: Susanne Johansson, Dec 15, 2014
10 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Decay-accelerating factor (DAF) functions as cell attachment receptor for a wide range of human enteroviruses. The Kuykendall prototype strain of coxsackievirus A21 (CVA21) attaches to DAF but requires interactions with intercellular cell adhesion molecule 1 (ICAM-1) to infect cells. We show here that a bioselected variant of CVA21 (CVA21-DAFv) generated by multiple passages in DAF-expressing, ICAM-1-negative rhabdomyosarcoma (RD) cells acquired the capacity to induce rapid and complete lysis of ICAM-1-deficient cells while retaining the capacity to bind ICAM-1. CVA21-DAFv binding to DAF on RD cells mediated lytic infection and was inhibited by either antibody blockade with a specific anti-DAF SCR1 monoclonal antibody (MAb) or soluble human DAF. Despite being bioselected in RD cells, CVA21-DAFv was able to lytically infect an additional ICAM-1-negative cancer cell line via DAF interactions alone. The finding that radiolabeled CVA21-DAFv virions are less readily eluted from surface-expressed DAF than are parental CVA21 virions during a competitive epitope challenge by an anti-DAF SCR1 MAb suggests that interactions between CVA21-DAFv and DAF are of higher affinity than those of the parental strain. Nucleotide sequence analysis of the capsid-coding region of the CVA21-DAFv revealed the presence of two amino acid substitutions in capsid protein VP3 (R96H and E101A), possibly conferring the enhanced DAF-binding phenotype of CVA21-DAFv. These residues are predicted to be embedded at the interface of VP1, VP2, and VP3 and are postulated to enhance the affinity of DAF interaction occurring outside the capsid canyon. Taken together, the data clearly demonstrate an enhanced DAF-using phenotype and expanded receptor utilization of CVA21-DAFv compared to the parental strain, further highlighting that capsid interactions with DAF alone facilitate rapid multicycle lytic cell infection.
    Journal of Virology 12/2004; 78(22):12603-12. DOI:10.1128/JVI.78.22.12603-12612.2004 · 4.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CVA21 and polioviruses both belong to the Enterovirus genus in the family of Picornaviridae, whereas rhinoviruses form a distinct picornavirus genus. Nevertheless, CVA21 and the major group of human rhinoviruses recognize intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor, whereas polioviruses use poliovirus receptor. The crystal structure of CVA21 has been determined to 3.2 A resolution. Its structure has greater similarity to poliovirus structures than to other known picornavirus structures. Cryo-electron microscopy (cryo-EM) was used to determine an 8.0 A resolution structure of CVA21 complexed with an ICAM-1 variant, ICAM-1(Kilifi). The cryo-EM map was fitted with the crystal structures of ICAM-1 and CVA21. Significant differences in the structure of CVA21 with respect to the poliovirus structures account for the inability of ICAM-1 to bind polioviruses. The interface between CVA21 and ICAM-1 has shape and electrostatic complementarity with many residues being conserved among those CVAs that bind ICAM-1.
    Structure 08/2005; 13(7):1019-33. DOI:10.1016/j.str.2005.04.011 · 5.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported that soluble decay-accelerating factor (DAF) and coxsackievirus-adenovirus receptor (CAR) blocked coxsackievirus B3 (CVB3) myocarditis in mice, but only soluble CAR blocked CVB3-mediated pancreatitis. Here, we report that the in vitro mechanisms of viral inhibition by these soluble receptors also differ. Soluble DAF inhibited virus infection through the formation of reversible complexes with CVB3, while binding of soluble CAR to CVB induced the formation of altered (A) particles with a resultant irreversible loss of infectivity. A-particle formation was characterized by loss of VP4 from the virions and required incubation of CVB3-CAR complexes at 37 degrees C. Dimeric soluble DAF (DAF-Fc) was found to be 125-fold-more effective at inhibiting CVB3 than monomeric DAF, which corresponded to a 100-fold increase in binding affinity as determined by surface plasmon resonance analysis. Soluble CAR and soluble dimeric CAR (CAR-Fc) bound to CVB3 with 5,000- and 10,000-fold-higher affinities than the equivalent forms of DAF. While DAF-Fc was 125-fold-more effective at inhibiting virus than monomeric DAF, complement regulation by DAF-Fc was decreased 4 fold. Therefore, while the virus binding was a cooperative event, complement regulation was hindered by the molecular orientation of DAF-Fc, indicating that the regions responsible for complement regulation and virus binding do not completely overlap. Relative contributions of CVB binding affinity, receptor binding footprint on the virus capsid, and induction of capsid conformation alterations for the ability of cellular DAF and CAR to act as receptors are discussed.
    Journal of Virology 10/2005; 79(18):12016-24. DOI:10.1128/JVI.79.18.12016-12024.2005 · 4.44 Impact Factor
Show more