Mechanism of B-cell receptor-induced phosphorylation and activation of phospholipase C-gamma2.

Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
Molecular and Cellular Biology (Impact Factor: 5.04). 12/2004; 24(22):9986-99. DOI: 10.1128/MCB.24.22.9986-9999.2004
Source: PubMed

ABSTRACT Phospholipase C-gamma2 (PLC-gamma2) plays an important role in B-cell signaling. Phosphorylation of various tyrosine residues of PLC-gamma2 has been implicated in regulation of its lipase activity. With the use of antibodies specific for each of the putative phosphorylation sites, we have now shown that PLC-gamma2 is phosphorylated on Y753, Y759, and Y1217 in response to engagement of the B-cell receptor in Ramos cells, as well as in murine splenic B cells. In cells stimulated maximally via this receptor, the extent of phosphorylation of Y1217 was three times that of Y753 or of Y759. Stimulation of Jurkat T cells or platelets via their immunoreceptors also elicited phosphorylation of Y753 and Y759 but not that of Y1217. A basal level of phosphorylation of Y753 was apparent in unstimulated lymphocytes. The extent of phosphorylation of Y753 and Y759, but not that of Y1217, correlated with the lipase activity of PLC-gamma2. Examination of the effects of various pharmacological inhibitors and of RNA interference in Ramos cells suggested that Btk is largely, but not completely, responsible for phosphorylation of Y753 and Y759, whereas phosphorylation of Y1217 is independent of Btk. Finally, phosphorylation of Y1217 and that of Y753 and Y759 occurred on different PLC-gamma2 molecules.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Egg activation at fertilization in deuterostomes requires a rise in intracellular Ca(2+), which is released from the egg's endoplasmic reticulum. In sea urchins, a Src Family Kinase (SpSFK1) is necessary for the PLCgamma-mediated signaling event that initiates this Ca(2+) release (Giusti, A.F., O'Neill, F.J., Yamasu, K., Foltz, K.R. and Jaffe, L.A., 2003. Function of a sea urchin egg Src family kinase in initiating Ca2+ release at fertilization. Dev. Biol. 256, 367-378.). Annotation of the Strongylocentrotus purpuratus genome sequence led to the identification of additional, predicted SFKs (Bradham, C.A., Foltz, D.R., Beane, W.S., Amone, M.I., Rizzo, F., Coffman, J.A., Mushegian, A., Goel, M., Morales, J., Geneviere, A.M., Lapraz, F., Robertson, A.J., Kelkar, H., Loza-Coll, M., Townley, I.K., Raisch, M., Roux, M.M., Lepage, T., Gache, C., McClay, D.R., Manning, G., 2006. The sea urchin kinome: a first look. Dev. Biol. 300, 180-193.; Roux, M.M., Townley, I.K., Raisch, M., Reade, A., Bradham, C., Humphreys, G., Gunaratne, H.J., Killian, C.E., Moy, G., Su, Y.H., Ettensohn, C.A., Wilt, F., Vacquier, V.D., Burke, R.D., Wessel, G. and Foltz, K.R., 2006. A functional genomic and proteomic perspective of sea urchin calcium signaling and egg activation. Dev. Biol. 300, 416-433.). Here, we describe the cloning and characterization of these 4 additional SFKs and test their function during the initial Ca(2+) release at fertilization using the dominant-interfering microinjection method coupled with Ca(2+) recording. While two of the new SFKs (SpFrk and SpSFK3) are necessary for Ca(2+) release, SpSFK5 appears dispensable for early egg to embryo transition events. Interestingly, SpSFK7 may be involved in preventing precocious release of Ca(2+). Binding studies indicate that only SpSFK1 is capable of direct interaction with PLCgamma. Immunolocalization studies suggest that one or more SpSFK and PLCgamma are localized to the egg cortex and at the site of sperm-egg interaction. Collectively, these data indicate that more than one SFK is involved in the Ca(2+) release pathway at fertilization.
    Developmental Biology 02/2009; 327(2):465-77. DOI:10.1016/j.ydbio.2008.12.032 · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is generally considered mammals and birds have five Tec family kinases (TFKs): Btk, Bmx (also known as Etk), Itk, Tec, and Txk (also known as Rlk). Here, we discuss the domains and their functions and regulation in TFKs. Over the last few years, a large number of genomes from various phyla have been sequenced making it possible to study evolutionary relationships at the molecular and sequence level. Using bioinformatics tools, we for the first time demonstrate that a TFK ancestor exists in the unicellular choanoflagellate Monosiga brevicollis, which is the closest known relative to metazoans with a sequenced genome. The analysis of the genomes for sponges, insects, hagfish, and frogs suggests that these species encode a single TFK. The insect form has a divergent and unique N-terminal region. Duplications generating the five members took place prior to the emergence of vertebrates. Fishes have two or three forms and the platypus, Ornithorhynchus anatinus, has four (lacks Txk). Thus, not all mammals have all five TFKs. The single identified TFK in frogs is an ortholog of Tec. Bmx seems to be unique to mammals and birds. SH3BP5 is a negative regulator of Btk. It is conserved in choanoflagellates and interestingly exists also in nematodes, which do not express TFKs, suggesting a broader function in addition to Btk regulation. The related SH3BP5-like protein is not found in Nematodes.
    Advances in genetics 02/2008; 64:51-80. · 5.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ubiquitous environmental heavy metal contaminant mercury (Hg) is a potent immunomodulator that has been implicated as a factor contributing to autoimmune disease. However, the mechanism(s) whereby Hg initiates or perpetuates autoimmune responses, especially at the biochemical/molecular level, remain poorly understood. Recent work has established a relationship between impaired B-cell receptor (BCR) signal strength and autoimmune disease. In previous studies, we have shown that in mouse WEHI-231 B cells, noncytotoxic concentrations of inorganic mercury (Hg(+2)) interfered with BCR-mediated growth control, suggesting that BCR signal strength was impaired by Hg(+2). Extracellular signal-regulated kinase (ERK) 1,2 mitogen-activated protein kinase (MAPK) is responsible for the activation of several transcription factors in B cells. Phosphorylation of ERK serves as an essential node of signal integration for the BCR. Thus, the magnitude of ERK activation serves as an operational metric for BCR signal strength. Using Western blotting and phospho-specific flow cytometry, we now show that the kinetics and magnitude of BCR-mediated activation of ERK-MAPK are markedly attenuated in WEHI-231 cells and splenic B cells that have been exposed to low and nontoxic burdens of Hg(+2). However, Hg(+2) does not seem to act directly on ERK-MAPK but rather on an upstream element or elements of the BCR signal transduction pathway, above the level of the key protein tyrosine kinase Syk. Our data suggest that the site of action of Hg(+2) may very well be localized on the plasma membrane. These findings support a connection between Hg(+2) and attenuated BCR signal strength in the etiology of autoimmune disease.
    Toxicological Sciences 11/2007; 99(2):512-21. DOI:10.1093/toxsci/kfm188 · 4.48 Impact Factor