Article

Mechanism of B-cell receptor-induced phosphorylation and activation of phospholipase C-gamma2.

Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
Molecular and Cellular Biology (Impact Factor: 5.04). 12/2004; 24(22):9986-99. DOI: 10.1128/MCB.24.22.9986-9999.2004
Source: PubMed

ABSTRACT Phospholipase C-gamma2 (PLC-gamma2) plays an important role in B-cell signaling. Phosphorylation of various tyrosine residues of PLC-gamma2 has been implicated in regulation of its lipase activity. With the use of antibodies specific for each of the putative phosphorylation sites, we have now shown that PLC-gamma2 is phosphorylated on Y753, Y759, and Y1217 in response to engagement of the B-cell receptor in Ramos cells, as well as in murine splenic B cells. In cells stimulated maximally via this receptor, the extent of phosphorylation of Y1217 was three times that of Y753 or of Y759. Stimulation of Jurkat T cells or platelets via their immunoreceptors also elicited phosphorylation of Y753 and Y759 but not that of Y1217. A basal level of phosphorylation of Y753 was apparent in unstimulated lymphocytes. The extent of phosphorylation of Y753 and Y759, but not that of Y1217, correlated with the lipase activity of PLC-gamma2. Examination of the effects of various pharmacological inhibitors and of RNA interference in Ramos cells suggested that Btk is largely, but not completely, responsible for phosphorylation of Y753 and Y759, whereas phosphorylation of Y1217 is independent of Btk. Finally, phosphorylation of Y1217 and that of Y753 and Y759 occurred on different PLC-gamma2 molecules.

0 Followers
 · 
70 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The treatment of chronic lymphocytic leukemia (CLL) with inhibitors targeting B cell receptor signaling and other survival mechanisms holds great promise. Especially the early clinical success of Ibrutinib, an irreversible inhibitor of Bruton's tyrosine kinase (BTK), has received widespread attention. In this review we will focus on the fundamental and clinical aspects of BTK inhibitors in CLL, with emphasis on Ibrutinib as the best studied of this class of drugs. Furthermore, we summarize recent laboratory as well as clinical findings relating to the first cases of Ibrutinib resistance. Finally, we address combination strategies with Ibrutinib, and attempt to extrapolate its current status to the near future in the clinic.Oncogene advance online publication, 23 June 2014; doi:10.1038/onc.2014.181.
    Oncogene 06/2014; DOI:10.1038/onc.2014.181 · 8.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic lymphocytic leukaemia (CLL) is an incurable malignancy of mature B cells. CLL is important clinically in Western countries because of its commonality and because of the significant morbidity and mortality associated with the progressive form of this incurable disease. The B cell receptor (BCR) expressed on the malignant cells in CLL contributes to disease pathogenesis by providing signals for survival and proliferation, and the signal transduction pathway initiated by engagement of this receptor is now the target of several therapeutic strategies. The purpose of this review is to outline current understanding of the BCR signal cascade in normal B cells and then question whether this understanding applies to CLL cells. In particular, this review studies the phenomenon of anergy in CLL cells, and whether certain adaptations allow the cells to overcome anergy and allow full BCR signaling to take place. Finally, this review analyzes how BCR signals can be therapeutically targeted for the treatment of CLL.
    07/2014; 2014:208928. DOI:10.1155/2014/208928
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the Wnt pathway, the secreted frizzled-related protein 2 (SFRP2) is thought to act as one of the several competitive inhibitors of Wnt. However, the precise role of SFRP2 is still poorly understood especially in B lymphocytes. Here, we investigated the function of SFRP2, comparing the SFRP2 defective as well as normal B lymphocytes in mice.
    BMC Research Notes 11/2014; 7(1):780. DOI:10.1186/1756-0500-7-780

Full-text (2 Sources)

Download
14 Downloads
Available from
Jul 9, 2014