Article

Glucocorticoid receptors are involved in the regulation of pulsatile urea excretion in toadfish.

Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
Journal of Comparative Physiology B (Impact Factor: 2.02). 12/2004; 174(8):649-58. DOI:10.1007/s00360-004-0456-y
Source: PubMed

ABSTRACT The objectives of this study were to characterize the pattern of pulsatile urea excretion in the gulf toadfish in the wake of exogenous cortisol loading and to determine the receptors involved in the regulation of this mechanism. Toadfish were fitted with indwelling arterial catheters and were infused with isosmotic NaCl for 48 h after which fish were treated with cortisol alone, cortisol + peanut oil, cortisol + RU486 (a glucocorticoid receptor antagonist) or cortisol + spironolactone (a mineralocorticoid receptor antagonist). Upon cortisol loading, fish treated with cortisol alone, cortisol + oil or cortisol + spironolactone experienced a two- to threefold reduction in pulsatile urea excretion. This reduction was due to a decrease in urea pulse size with no effect on pulse frequency compared to values measured during the control NaCl infusion period. In addition, these fish showed an increase in plasma urea concentrations upon treatment. These apparent effects of cortisol treatment were abolished in fish treated with cortisol + RU486. In contrast, these fish showed an increase in pulsatile urea excretion mediated by a twofold increase in pulse size with no change in frequency. Likewise, fish treated with cortisol + RU486 showed a significant decrease in plasma urea concentrations over the course of the experiment. The findings of this study indicate that high levels of cortisol reduce pulsatile urea excretion by decreasing pulse size. In addition, it appears that glucocorticoid receptors and not mineralocorticoid receptors are involved in the regulation of the toadfish pulsatile urea excretion mechanism.

0 0
 · 
0 Bookmarks
 · 
59 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Measurable quantities of the selective serotonin reuptake inhibitor (SSRI), fluoxetine, have been found in surface waters and more recently in the tissues of fish. This highly prescribed pharmaceutical inhibits the reuptake of the monoamine, serotonin (5-HT; 5-hydroxytryptamine), causing a local amplification of 5-HT concentrations. Serotonin is involved in the regulation of many physiological processes in teleost fish including branchial nitrogen excretion and intestinal osmoregulation. Since the gill and intestine are directly exposed to the environment, environmental exposure to fluoxetine has the potential of affecting both these mechanisms. In the present study, we test the potential sensitivity of these processes to fluoxetine by implanting gulf toadfish, Opsanus beta, intraperitoneally with different concentrations of fluoxetine (0 (control), 25, 50, 75 and 100 microgg(-1). Fluoxetine treatments of 25 and 50 microgg(-1) were sublethal and were used in subsequent experiments. Fish treated with both 25 and 50 microgg(-1) fluoxetine had significantly higher circulating levels of 5-HT than control fish, suggesting that any 5-HT sensitive physiological process could potentially be affected by these two fluoxetine doses. However, only fish treated with 25 microgg(-1) fluoxetine showed a significant increase in urea excretion. A similar increase was not measured in fish treated with 50 microgg(-1) fluoxetine, likely because of their high circulating levels of cortisol which inhibits urea excretion in toadfish. Intestinal fluid absorption appeared to be stimulated in fish treated with 25g microgg(-1) fluoxetine but inhibited in 50 microgg(-1) treated fish. Despite these differing responses, both doses of fluoxetine resulted in lowered plasma osmolality values, which was expected based on the stimulation of fluid absorption in the 25 microgg(-1) fluoxetine-treated fish but is surprising with the 50 microgg(-1) treated fish. In the case of the latter, the corresponding stress response invoked by this level of fluoxetine may have resulted in an additional osmoregulatory response which accounts for the lowered plasma osmolality. Our findings suggest that branchial urea excretion and intestinal osmoregulation are responsive to the SSRI, fluoxetine, and further investigation is needed to determine the sensitivity of these processes to chronic waterborne fluoxetine contamination.
    Aquatic toxicology (Amsterdam, Netherlands) 11/2009; 95(2):164-71. · 3.12 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Based on early pharmacological work, the serotonin 2A (5-HT(2A)) receptor subtype is believed to be involved in the regulation of toadfish pulsatile urea excretion. The goal of the following study was to characterize the toadfish 5-HT(2A) receptor at a molecular level, to determine the tissues in which this receptor is predominantly expressed and to further investigate the pharmacological specificity of toadfish pulsatile urea excretion by examining the effect of ketanserin, a 5-HT(2A) receptor antagonist, on resting rates of pulsatile urea excretion. The full-length toadfish 5-HT(2A) receptor encodes a 496 amino acid sequence and shares 57-80% sequence identity to 5-HT(2A) receptors of other organisms, with 100% conservation among important ligand-binding residues. Toadfish 5-HT(2A) receptor mRNA expression was highest in the swim bladder and gonad, followed by the whole brain. All other tissues tested (esophagus, stomach, anterior intestine, posterior intestine, rectum, liver, kidney, heart, muscle and gill) had mRNA expression levels that were significantly less than whole brain. Toadfish 5-HT(2A) receptor mRNA expression within the brain was highest in the hindbrain, telencephalon and midbrain/diencephalon regions. Treatment with the 5-HT(2A) receptor antagonist, ketanserin, resulted in a significant decrease in the pulsatile component of spontaneous urea excretion due to a reduction in urea pulse size with no significant change in pulse frequency. These results lend further support for the 5-HT(2A) receptor in the regulation of pulsatile urea excretion in toadfish.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 08/2012; 163(3-4):319-26. · 2.20 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: In both mammals and teleost fish, serotonin stimulates cortisol secretion via the 5-HT(1A) receptor. Additionally, a negative feedback loop exists in mammals whereby increased circulating levels of cortisol inhibit 5-HT(1A) receptor activity. To investigate the possibility of such a feedback mechanism in teleosts, plasma cortisol levels and signaling in Gulf toadfish (Opsanus beta) were manipulated and the role of cortisol in the control of 5-HT(1A) evaluated. Despite a significant 4-fold increase in plasma [cortisol], crowded toadfish expressed similar amounts of 5-HT(1A) mRNA transcript as uncrowded toadfish; whereas, cortisol-implanted fish possessed 41.8% less 5-HT(1A) mRNA transcript compared to vehicle-implanted controls. This cortisol effect appeared to be reversed in RU486-injected fish, which blocks glucocorticoid receptors, as these fish expressed nearly twice as much 5-HT(1A) receptor transcript as the vehicle-injected fish despite significantly elevated cortisol levels. The binding affinity for the 5-HT(1A) receptor in the brain did not vary between any groups; however, maximum binding was significantly higher in uncrowded toadfish compared to crowded, and the same significant difference was observed between the maximum binding of vehicle and cortisol-implanted fish. The opposite trend was seen in RU486-injected and vehicle-injected fish, with RU486-injected fish having significantly higher maximal binding compared to vehicle-injected controls. Injection with the 5-HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin revealed an inhibition of cortisol secretion that was independent of 5-HT(1A) transcript and protein binding. These results suggest that cortisol plays a role in regulating the 5-HT(1A) receptor via GR-mediated pathways; however, further study is necessary to elucidate how and where this inhibition is mediated.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology 01/2013; · 2.20 Impact Factor

Full-text (2 Sources)

View
11 Downloads
Available from
Aug 26, 2013