Li Y, Lu W, He X, Schwartz AL, Bu G.. LRP6 expression promotes cancer cell proliferation and tumorigenesis by altering β-catenin subcellular distribution. Oncogene 23: 9129-9135

Harvard University, Cambridge, Massachusetts, United States
Oncogene (Impact Factor: 8.46). 01/2005; 23(56):9129-35. DOI: 10.1038/sj.onc.1208123
Source: PubMed


The Wnt signaling pathway plays key roles in both embryogenesis and tumorigenesis. The low-density lipoprotein (LDL) receptor-related protein-6 (LRP6), a novel member of the expanding LDL receptor family, functions as an indispensable co-receptor for the Wnt signaling pathway. Although the role of LRP6 in embryonic development is now well established, its role in tumorigenesis is unclear. We report that LRP6 is readily expressed at the transcript level in several human cancer cell lines and human malignant tissues. Furthermore, using a retroviral gene transfer system, we find that stable expression of LRP6 in human fibrosarcoma HT1080 cells alters subcellular beta-catenin distribution such that the cytosolic beta-catenin level is significantly increased. This is accompanied by a significant increase in Wnt/beta-catenin signaling and cell proliferation. Finally, we demonstrate that LRP6 expression promotes tumorigenesis in vivo. These results thus indicate that LRP6 may function as a potential oncogenic protein by modulating Wnt/beta-catenin signaling.

21 Reads
  • Source
    • "LRP6 is a well-known activator of beta-catenin, leading to pro-proliferation, pro-metastasis and anti-apoptosis in several cancer types including HCC [21,28,29]. Here, we demonstrated that overexpression of miR-126-3p led to down-regulation of LRP6 and its downstream beta-catenin in vitro and in vivo studies. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The deregulation of microRNAs has been reported to play a pivotal role in hepatocellular carcinoma (HCC). MiR-126-3p has been reported to be associated with poor prognosis in HCC. However the underlying mechanism of miR-126-3p in HCC remains unclear.Methods The expression levels of miR-126-3p in HCC tissues and cells were detected by RT-PCR. Transwell assay and capillary tube formation assay were applied to assess the metastasis and angiogenesis in vitro. Nude mice subcutaneous tumor model was used to perform in vivo study. Dual- luciferase reporter assay was conducted to confirm the direct binding of miR-126-3p and target genes. The changes of biomarker protein levels were examined by western blot and Immunohistochemistry.ResultsWe observed that the miR-126-3p expression levels in HCC tissues and cells were significantly down-regulated. Through gain- and loss- of function studies, we showed that miR-126-3p dramatically inhibited HCC cells from migrating and invading extracellular matrix gel and suppressed capillary tube formation of endothelial cells in vitro. Furthermore, overexpression of miR-126-3p significantly reduced the volume of tumor and microvessel density in vivo. LRP6 and PIK3R2 were identified as targets of miR-126-3p. Silencing LRP6 and PIK3R2 had similar effects of miR-126-3p restoration on metastasis and angiogenesis individually in HCC cells. Furthermore, the miR-126-3p level was inversely correlated with LRP6 and PIK3R2 in HCC tissues. In addition, the rescue experiments indicated that the metastasis and angiogenesis functions of miR-126-3p were mediated by LRP6 and PIK3R2.Conclusion Our results demonstrates that deregulation of miR-126-3p contributes to metastasis and angiogenesis in HCC. The restoration of miR-126-3p expression may be a promising strategy for HCC therapy.
    Journal of Translational Medicine 09/2014; 12(1):259. DOI:10.1186/s12967-014-0259-1 · 3.93 Impact Factor
  • Source
    • "Aberrant LRP6 expression alters Wnt ligand binding and receptor activation, and extracellular antagonists are associated with stem cell self-renewal and differentiation as well as cancer development and progression 15. Specifically, LRP6 protein binding to the Frizzled family member, leads to the activation of the Wnt pathway 16 and the subsequent stabilization and nuclear translocation of β-catenin 17. Pharmacological inhibition of the LRP6 Wnt-binding domains leads to the suppression of the Wnt pathway and its downstream gene regulatory mechanisms 18. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives: Low-density lipoprotein receptor-related protein 6 (LRP6) modulates Wnt signaling transduction. Altered LRP6 expression leads to abnormal Wnt protein activation, cell proliferation and tumorigenesis. This study investigated the association between LRP6 single-nucleotide polymorphisms (SNPs) and non-small-cell lung cancer (NSCLC) in a Chinese population. Methods: A total of 500 NSCLC patients and 500 healthy controls were recruited for assessment of four LRP6 SNPs using the SEQUENOM MassARRAY matrix-assisted laser desorption ionization-time of flight mass spectrometry. The association between genotype and NSCLC risk was evaluated by computing the odds ratio (OR) and 95% confidence interval (CI) with multivariate unconditional logistic regression analyses. Results: The frequency of the LRP6 rs10845498 genotype was 60.9% (A/A), 35.5% (AG) and 3.6% (GG) in patients with lung squamous cell carcinoma (SCC) and 69.2% (A/A), 27.2% (A/G) and 3.6% (GG) in controls. Logistic regression analysis revealed that the LRP6 rs10845498 A/A major allele was associated with a reduced risk in developing lung SCC (OR = 0.69; 95% CI, 0.48-1.00; P=0.04), and tobacco smokers had a 2.21 fold greater risk in developing SCC than nonsmokers (p<0.01, 95% CI, 1.72-2.85), and tobacco smokers who carried an "A" allele (AA+AG) in rs6488507 had a 2.34-fold greater risk in developing NSCLC than other patients (p< 0.01, 95%CI, 1.74-3.13). Conclusions: The LRP6 rs10845498 SNP is associated with a reduced risk of lung SCC, while tobacco smoke increases the risk. LRP6 rs6488507 polymorphism synergistically increased the risk of NSCLC in tobacco smokers. Further studies are needed to elucidate the functional impact of LRP6 expression and activity in NSCLC.
    International journal of medical sciences 05/2014; 11(7):685-90. DOI:10.7150/ijms.8852 · 2.00 Impact Factor
  • Source
    • "LRP5-trasfected ldl-7 cells and the control cells have been described before [8], and were cultured in Ham's F-12 medium containing 10% of FBS and 350 µg/ml of G418. LRP6-transduced HT1080 cells and the control cells have been described before [17]. LRP6-transduced HT1080 and Wnt3A-secreting L cells were cultured in DMEM medium containing 10% of FBS and 350 µg/ml of G418. "
    [Show abstract] [Hide abstract]
    ABSTRACT: While Mesd was discovered as a specialized molecular endoplasmic reticulum chaperone for the Wnt co-receptors LRP5 and LRP6, recombinant Mesd protein is able to bind to mature LRP5 and LRP6 on the cell surface and acts as a universal antagonist of LRP5/6 modulators. In our previous study, we found that the C-terminal region of Mesd, which is absent in sequences from invertebrates, is necessary and sufficient for binding to mature LRP6 on the cell surface. In the present studies, we further characterized the interaction between the C-terminal region Mesd peptide and LRP5/6. We found that Mesd C-terminal region-derived peptides block Mesd binding to LRP5 at the cell surface too. We also showed that there are two LRP5/6 binding sites within Mesd C-terminal region which contain several positively charged residues. Moreover, we demonstrated that the Mesd C-terminal region peptide, like the full-length Mesd protein, blocked Wnt 3A- and Rspodin1-induced Wnt/β-catenin signaling in LRP5- and LRP6- expressing cells, suppressed Wnt/β-catenin signaling in human breast HS578T cells and prostate cancer PC-3 cells, and inhibited cancer cell proliferation, although the full-length Mesd protein is more potent than its peptide. Finally, we found that treatment of the full-length Mesd protein and its C-terminal region peptide significantly increased chemotherapy agent Adriamycin-induced cytotoxicity in HS578T and PC-3 cells. Together, our results suggest that Mesd C-terminal region constitutes the major LRP5/6-binding domain, and that Mesd protein and its C-terminal region peptide have a potential therapeutic value in cancer.
    PLoS ONE 02/2013; 8(2):e58102. DOI:10.1371/journal.pone.0058102 · 3.23 Impact Factor
Show more

Preview (2 Sources)

21 Reads
Available from