Article

A viral epitope that mimics a self antigen can accelerate but not initiate autoimmune diabetes.

Immune Regulation Lab, Department of Developmental Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA.
Journal of Clinical Investigation (Impact Factor: 13.77). 12/2004; 114(9):1290-8. DOI: 10.1172/JCI22557
Source: PubMed

ABSTRACT We document here that infection of prediabetic mice with a virus expressing an H-2Kb-restricted mimic ligand to a self epitope present on beta cells accelerates the development of autoimmune diabetes. Immunization with the mimic ligand expanded autoreactive T cell populations, which was followed by their trafficking to the islets, as visualized in situ by tetramer staining. In contrast, the mimic ligand did not generate sufficient autoreactive T cells in naive mice to initiate disease. Diabetes acceleration did not occur in H-2Kb-deficient mice or in mice tolerized to the mimic ligand. Thus, arenavirus-expressed mimics of self antigens accelerate a previously established autoimmune process. Sequential heterologous viral infections might therefore act in concert to precipitate clinical autoimmune disease, even if single exposure to a viral mimic does not always cause sufficient tissue destruction.

0 Followers
 · 
129 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: As a group of disorders, autoimmunity ranks as the third most prevalent cause of morbidity and mortality in the Western World. However, the etiology of most autoimmune diseases remains unknown. Although genetic linkage studies support a critical underlying role for genetics, the geographic distribution of these disorders as well as the low concordance rates in monozygotic twins suggest that a combination of other factors including environmental ones are involved. Virus infection is a primary factor that has been implicated in the initiation of autoimmune disease. Infection triggers a robust and usually well-coordinated immune response that is critical for viral clearance. However, in some instances, immune regulatory mechanisms may falter, culminating in the breakdown of self-tolerance, resulting in immune-mediated attack directed against both viral and self-antigens. Traditionally, cross-reactive T-cell recognition, known as molecular mimicry, as well as bystander T-cell activation, culminating in epitope spreading, have been the predominant mechanisms elucidated through which infection may culminate in an T-cell-mediated autoimmune response. However, other hypotheses including virus-induced decoy of the immune system also warrant discussion in regard to their potential for triggering autoimmunity. In this review, we discuss the mechanisms by which virus infection and antiviral immunity contribute to the development of autoimmunity.
    Immunological Reviews 09/2013; 255(1):197-209. DOI:10.1111/imr.12091 · 12.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Research in genetics and immunology was going on separate strands for a long time. Type 1 diabetes mellitus might not be characterized with a single pathogenetic factor. It develops when a susceptible individual is exposed to potential triggers in a given sequence and timeframe that eventually disarranges the fine-tuned immune mechanisms that keep autoimmunity under control in health. Genomewide association studies have helped to understand the congenital susceptibility, and hand-in-hand with the immunological research novel paths of immune dysregulation were described in central tolerance, apoptotic pathways, or peripheral tolerance mediated by regulatory T-cells. Epigenetic factors are contributing to the immune dysregulation. The interplay between genetic susceptibility and potential triggers is likely to play a role at a very early age and gradually results in the loss of balanced autotolerance and subsequently in the development of the clinical disease. Genetic susceptibility, the impaired elimination of apoptotic β -cell remnants, altered immune regulatory functions, and environmental factors such as viral infections determine the outcome. Autoreactivity might exist under physiologic conditions and when the integrity of the complex regulatory process is damaged the disease might develop. We summarized the immune regulatory mechanisms that might have a crucial role in disease pathology and development.
    Clinical and Developmental Immunology 08/2013; 2013:254874. DOI:10.1155/2013/254874 · 2.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immunity to previously encountered viruses can alter responses to unrelated pathogens. This phenomenon, which is known as heterologous immunity, has been well established in animal model systems. Heterologous immunity appears to be relatively common and may be beneficial by boosting protective responses. However, heterologous reactivity can also result in severe immunopathology. The key features that define heterologous immune modulation include alterations in the CD4(+) and CD8(+) T cell compartments and changes in viral dynamics and disease progression. In this review, we discuss recent advances and the current understanding of antiviral immunity in heterologous infections. The difficulties of studying these complex heterologous infections in humans are discussed, with special reference to the variations in HLA haplotypes and uncertainties about individuals' infection history. Despite these limitations, epidemiological analyses in humans and the data from mouse models of coinfection can be applied toward advancing the design of therapeutics and vaccination strategies.
    Journal of leukocyte biology 11/2013; 95(3). DOI:10.1189/jlb.0713386 · 4.99 Impact Factor

Full-text

Download
70 Downloads
Available from
May 16, 2014