Article

Mutations of the POMT1 gene found in patients with Walker-Warburg syndrome lead to a defect of protein O-mannosylation.

Glycobiology Research Group, Tokyo Metropolitan Institute of Gerontology, Foundation for Research on Aging and Promotion of Human Welfare, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan.
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 01/2005; 325(1):75-9. DOI: 10.1016/j.bbrc.2004.10.001
Source: PubMed

ABSTRACT Walker-Warburg syndrome (WWS) is an autosomal recessive developmental disorder characterized by congenital muscular dystrophy, brain malformation, and structural eye abnormalities. WWS is due to defects in protein O-mannosyltransferase 1 (POMT1), which catalyzes the transfer of mannose to protein to form O-mannosyl glycans. POMT1 has been shown to require co-expression of another homologue, POMT2, to have activity. In the present study, mutations in POMT1 genes observed in patients with WWS were duplicated by site-directed mutagenesis. The mutant genes were co-expressed with POMT2 in Sf9 cells and assayed for protein O-mannosyltransferase activity. Expression of all mutant proteins was confirmed by Western blot, but the recombinant proteins did not show any protein O-mannosyltransferase activity. The results indicate that mutations in the POMT1 gene result in a defect of protein O-mannosylation in WWS patients. This may cause failure of binding between alpha-dystroglycan and laminin or other molecules in the extracellular matrix and interrupt normal muscular function and migration of neurons in developing brain.

0 Bookmarks
 · 
62 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most proteins are modified by glycans, which can modulate the biological properties and functions of glycoproteins. The major glycans can be classified into N-glycans and O-glycans according to their glycan-peptide linkage. This review will provide an overview of the O-mannosyl glycans, one subtype of O-glycans. Originally, O-mannosyl glycan was only known to be present on a limited number of glycoproteins, especially α-dystroglycan (α-DG). However, once a clear relationship was established between O-mannosyl glycan and the pathological mechanisms of some congenital muscular dystrophies in humans, research on the biochemistry and pathology of O-mannosyl glycans has been expanding. Because α-DG glycosylation is defective in congenital muscular dystrophies, which also feature abnormal neuronal migration, these disorders are collectively called α-dystroglycanopathies. In this article, I will describe the structure, biosynthesis, and pathology of O-mannosyl glycans.
    Journal of Biochemistry 11/2014; · 3.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Archaeplastida consists of three lineages, Rhodophyta, Virideplantae and Glaucophyta. The extracellular matrix of most members of the Rhodophyta and Viridiplantae consists of carbohydrate-based or a highly glycosylated protein-based cell wall while the Glaucophyte covering is poorly resolved. In order to elucidate possible evolutionary links between the three advanced lineages in Archaeplastida, a genomic analysis was initiated. Fully sequenced genomes from the Rhodophyta and Virideplantae and the well-defined CAZy database on glycosyltransferases were included in the analysis. The number of glycosyltransferases found in the Rhodophyta and Chlorophyta are generally much lower then in land plants (Embryophyta). Three specific features exhibited by land plants increase the number of glycosyltransferases in their genomes: (1) cell wall biosynthesis, the more complex land plant cell walls require a larger number of glycosyltransferases for biosynthesis, (2) a richer set of protein glycosylation, and (3) glycosylation of secondary metabolites, demonstrated by a large proportion of family GT1 being involved in secondary metabolite biosynthesis. In a comparative analysis of polysaccharide biosynthesis amongst the taxa of this study, clear distinctions or similarities were observed in (1) N-linked protein glycosylation, i.e., Chlorophyta has different mannosylation and glucosylation patterns, (2) GPI anchor biosynthesis, which is apparently missing in the Rhodophyta and truncated in the Chlorophyta, (3) cell wall biosynthesis, where the land plants have unique cell wall related polymers not found in green and red algae, and (4) O-linked glycosylation where comprehensive orthology was observed in glycosylation between the Chlorophyta and land plants but not between the target proteins.
    PLoS ONE 10/2013; 8(10):e76511. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian O-mannosylation pathway for protein post-translational modification is intricately involved in modulating cell-matrix interactions in the musculature and nervous system. Defects in enzymes of this biosynthetic pathway are causative for multiple forms of congenital muscular dystophy. The application of advanced genetic and biochemical technologies has resulted in remarkable progress in this field over the past few years culminating with the publication of three landmark papers in 2013 alone. In this review, we will highlight recent progress focusing on the dramatic expansion in the set of genes known to be involved in O-mannosylation and disease processes, the concurrent acceleration in the rate of O-mannosylation pathway protein functional assignments, the tremendous increase in the number of proteins now known to be modified by O-mannosylation, and the recent progress in protein O-mannose glycan quantification and site assignment. Also, we attempt to highlight key outstanding questions raised by this abundance of new information.
    Biochemistry 05/2014; · 3.38 Impact Factor