Thrombin induces endocytosis of endoglin and type-II TGF-β receptor and down-regulation of TGF-β signaling in endothelial cells

Department of Biochemistry, The University of Texas Health Center at Tyler, 11937 US Highway 271, Tyler, TX 75708, USA.
Blood (Impact Factor: 10.45). 04/2005; 105(5):1977-85. DOI: 10.1182/blood-2004-08-3308
Source: PubMed


Thrombin activates protease-activated receptor 1 (PAR1) on endothelial cells (ECs) and is critical for angiogenesis and vascular development. However, the mechanism underlying the proangiogenic effect of thrombin has not been elucidated yet. Here, we report the discovery of a novel functional link between thrombin-PAR1 and transforming growth factor-beta (TGF-beta) signaling pathways. We showed that thrombin via PAR1 induced the internalization of endoglin and type-II TGF-beta receptor (TbetaRII) but not type-I receptors in human ECs. This effect was mediated by protein kinase C-zeta (PKC-zeta) since specific inhibition of PKC-zeta caused an aggregation of endoglin or TbetaRII on cell surface and blocked their internalization by thrombin. Furthermore, acute and long-term pretreatment of ECs with thrombin or PAR1 peptide agonist suppressed the TGF-beta-induced serine phosphorylation of Smad2, a critical mediator of TGF-beta signaling. Moreover, activation of PAR1 led to a profound and spread cytosolic clustering formation of Smad2/3 and markedly prevented Smad2/3 nuclear translocation evoked by TGF-beta1. Since TGF-beta plays a crucial role in the resolution phase of angiogenesis, the down-regulation of TGF-beta signaling by thrombin-PAR1 pathway may provide a new insight into the mechanism of the proangiogenic effect of thrombin.

Download full-text


Available from: Hua Tang, Sep 17, 2014
  • Source
    • "Gene expression level was normalized to RPL13. The Rpl13a primers were previously described in [36]. Each sample was tested in duplicate. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Thrombin receptor, F2R or PAR1 is a G-protein coupled receptor, located in the membrane of endothelial cells. It has been initially found to transduce signals in hemostasis, but recently also known to act in cancer and in vascular development. Mouse embryos lacking PAR1 function die from hemorrhages with varying frequency at midgestation. We have performed a survey of potential PAR1 homologs in the zebrafish genome and identified a teleost ortholog of mammalian PAR1. Knockdown of par1 function in zebrafish embryos demonstrates a requirement for Par1 in cardio-vascular development. Furthermore, we show that function of Par1 requires the presence of a phylogenetically conserved proteolytic cleavage site and a second intracellular domain. Altogether our results demonstrate a high degree of conservation of PAR1 proteins in the vertebrate lineage in respect to amino acid sequence as well as protein function.
    PLoS ONE 07/2012; 7(7):e42131. DOI:10.1371/journal.pone.0042131 · 3.23 Impact Factor
  • Source
    • "Thrombin is involved in the coagulation cascade and converts soluble fibrinogen into insoluble strands of fibrin and is inactivated by antithrombin and serine protease inhibitors. Thrombin activated protease-activated receptor 1 (PAR1), induces endocytosis of Endoglin and TβRII, thereby down regulating TGF-β signaling in endothelial cells, demonstrating the role of thrombin in regulating angiogenesis (Tang et al., 2005). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Physiological wound healing is a complex process requiring the temporal and spatial co-ordination of various signaling networks, biomechanical forces, and biochemical signaling pathways in both hypoxic and non-hypoxic conditions. Although a plethora of factors are required for successful physiological tissue repair, transforming growth factor beta (TGF-β) expression has been demonstrated throughout wound healing and shown to regulate many processes involved in tissue repair, including production of ECM, proteases, protease inhibitors, migration, chemotaxis, and proliferation of macrophages, fibroblasts of the granulation tissue, epithelial and capillary endothelial cells. TGF-β mediates these effects by stimulating signaling pathways through a receptor complex which contains Endoglin. Endoglin is expressed in a broad spectrum of proliferating and stem cells with elevated expression during hypoxia, and regulates important cellular functions such as proliferation and adhesion via Smad signaling. This review focuses on how the TGF-β family and Endoglin, regulate stem cell availability, and modulate cellular behavior within the wound microenvironment, includes current knowledge of the signaling pathways involved, and explores how this information may be applicable to inflammatory and/or angiogenic diseases such as fibrosis, rheumatoid arthritis and metastatic cancer.
    Frontiers in Physiology 11/2011; 2:89. DOI:10.3389/fphys.2011.00089 · 3.53 Impact Factor
  • Source
    • "This cytokine also regulates the activity of the VEGF system and enhances endothelial cell survival [28,29]. Stimulation of growth factors and expression of their receptors by thrombin and tissue factors has been detected in many trials [21,30,31]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In experimental systems, interference with coagulation can affect tumor biology. We suggested that abnormal coagulation could be a negative predictor for response to immunotherapy and survival among patients with metastatic renal cell carcinoma (MRCC). To address this issue, retrospective analysis of 289 previously untreated MRCC patients entering on institutional review board-approved clinical trials was conducted between 2003 and 2006. In addition, two groups of MRCC patients with (n = 28) or without (n = 28) hypercoagulability were compared in a case-control study. Baseline and treatment characteristics were well balanced. Hypercoagulability was present at treatment start in 40% of patients. Median baseline fibrinogen was 6.2 mg/dl. Serious disorders were found in 68% of patients. Abnormal coagulation was strongly associated with a number of metastatic sites (2 and more metastatic sites vs. 0-1 (P = .001). Patients with high extent of hypercoagulability had significantly higher number of metastatic sites (P = .02). On univariate analysis, patients with hypercoagulability had significantly shorter overall survival than patients with normal coagulation; median survivals of 8.9 and 16.3, respectively (P = .001).Short survival and low response rate also were significantly associated with hypercoagulability in a case-control study. Median survival was 8.2 months and 14.6 months, respectively (P = .0011). Disease control rate (overall response + stable disease) was significantly higher in patients with normal coagulation: 71.4 versus 42.9% (P = .003). Hypercoagulability disorders were found to be prognostic factor for response rate to systemic therapy and survival in patients with MRCC.
    Journal of Experimental & Clinical Cancer Research 02/2009; 28(1):30. DOI:10.1186/1756-9966-28-30 · 4.43 Impact Factor
Show more