Life's smile, death's grin: vital functions of apoptosis-executing proteins.

INSERM U-517, Faculty of Medicine and Pharmacy, 7 Boulevard Jeanne d'Arc, 21033 Dijon, France.
Current Opinion in Cell Biology (Impact Factor: 8.74). 01/2005; 16(6):639-46. DOI: 10.1016/
Source: PubMed

ABSTRACT Apoptosis is executed by caspases as well as caspase-independent death effectors. Caspases are expressed as inactive zymogens in virtually all animal cells and are activated in cells destined to undergo apoptosis. However, there are many examples where caspase activation is actually required for cellular processes not related to cell death, namely terminal differentiation, activation, proliferation, and cytoprotection. Several caspase-independent death effectors including apoptosis-inducing factor, endonuclease G and a serine protease (Omi/HtrA2) are released from the mitochondrial intermembrane space upon permeabilization of the outer membrane. Such proteins also have important roles in cellular redox metabolism and/or mitochondrial biogenesis. As a general rule, it thus appears that cell-death-relevant proteins, especially those involved in the core of the executing machinery, have a dual function in life and death. This has important implications for pathophysiology. The fact that the building blocks of the apoptotic machinery have normal functions not related to cell death may mean that essential parts of the apoptotic executioner cannot be lost and thus reduces the possibility of oncogenic mutations that block the apoptotic program. Moreover, therapeutic suppression of unwarranted cell death must be designed to target only the lethal (and not the vital) role of death effectors.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Delayed neuronal death in the penumbral region of a stroke is largely responsible for many negative implications seen in stroke victims. This type of neuronal death occurs in many forms, including apoptosis, necrosis, and alternative mechanisms. Although caspases are usually associated with apoptosis, there are several morphologically and biochemically distinct types of cell death that are independent of caspase activation. Downstream effectors and processes of mitochondrial damage, such as AIF, endonuclease G, BNIP3, mitophagy, mitochondrial biogenesis, chaperone-mediated autophagy, reactive oxygen species production as well as parallel endoplasmic reticular stress and lysosomal dysfunction, have all been shown to play a role in post-stroke delayed neuronal cell death. In this chapter, we attempt to summarize these caspase-independent events and their potential therapeutic applications as targets for intervention.
    Springer Series in Translational Stroke Research: From Target Selection to Clinical Trials, Edited by Paul A. Lapchak, John H. Zhang, 03/2012: chapter 7: pages 145-174; Springer., ISBN: 978-1-4419-9530-8
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer and Parkinson diseases are age-related neurodegenerative disorders in which formation of amyloid aggregates by amyloid-beta (Abeta) and α-synuclein (αS) proteins, respectively, are recognised critical events that occur early in the disease process. These aggregates cause disruption of mitochondrial function in neurons, initiating a pathophysiological cascade leading to bio-energetic collapse and ultimately neuronal cell death. The detailed mechanisms are, however, largely unknown. In vitro studies in our laboratory aimed to, (i) investigate destabilisation of mitochondrial phospholipid membranes by these amyloid aggregates and, (ii) explore the protective effect of select polyphenolic compounds on mitochondria. Exposure of mitochondria, isolated from human neuroblastoma SH-SY5Y cells, to amyloid aggregates induced a strong and dose-dependent release of cytochrome c, reflecting damage to the outer and/or inner mitochondrial membranes. Importantly, targeting of aggregates to mitochondria was shown to be dependent upon cardiolipin, a mitochondria-specific phospholipid known to play a critical role in launching apoptosis. Moreover, the ability of amyloid aggregates to damage mitochondrial membranes was confirmed using a liposome permeabilisation assay. Finally, we found that the polyphenol compounds morin, rosmarinic acid, epigallocatechingallate and black tea extract were potent mito-protectants, and may thus delay the onset of neurodegenerative diseases.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Overexpression of Bcl-2, a typical anti-apoptotic protein, is one of the most effective means to maintain mitochondria integrity in recombinant CHO (rCHO) cell culture treated with sodium butyrate (NaBu). NaBu is known as a typical specific productivity-enhancing factor and also a well-known apoptosis inducer. Bcl-2 is distributed to and functions in multiple intracellular organelles such as the nucleus, mitochondria, and endoplasmic reticulum (ER). To evaluate the effect of organelle-specific overexpression of Bcl-2 on NaBu-induced apoptosis in rCHO cells, Bcl-2 expression was restricted to the mitochondria or to the ER either by employing a mitochondrial insertion sequence of ActA or by insertion of an ER-specific sequence of cytochrome b5 to their respective sequences. The rCHO cell lines overexpressing wild-type Bcl-2 (WT-Bcl-2), mitochondrial Bcl-2 (MT-Bcl-2), and ER-targeted Bcl-2 (ER-Bcl-2) were established. Overexpression of WT-Bcl-2, MT-Bcl-2, and ER-Bcl-2 could increase cell viability and decrease LDH release under NaBu-treated conditions. Additionally, overexpression of WT-Bcl-2, MT-Bcl-2, and ER-Bcl-2 could suppress NaBu-induced apoptosis, as demonstrated by a DNA fragmentation assay. A mitochondrial membrane potential assay revealed that ER-Bcl-2 overexpression can maintain the mitochondrial membrane integrity without being affected by MT-Bcl-2 overexpression, indicating that the role of ER should be considered in alleviating NaBu-induced apoptosis by a genetic modulation strategy. Taken together, it was found that restricted Bcl-2 overexpression at the ER can inhibit the NaBu-induced apoptosis by maintaining mitochondria integrity in rCHO cells.
    PROCESS BIOCHEMISTRY 12/2012; 47(12):2518-2522. DOI:10.1016/j.procbio.2012.06.021 · 2.52 Impact Factor


Available from