Marine quality assessment by use of benthic species-abundance distributions: a proposed new protocol within the European Union Water Framework Directive

Stockholm University, Tukholma, Stockholm, Sweden
Marine Pollution Bulletin (Impact Factor: 2.79). 12/2004; 49(9-10):728-39. DOI: 10.1016/j.marpolbul.2004.05.013
Source: PubMed

ABSTRACT The aim of this study is to develop a new method for classification of marine benthic quality according to the European Union Water Framework Directive. Tolerance values to environmental disturbance were determined in an objective analysis for benthic species along the Swedish west coast by using 4676 samples from 257 stations. Based on a combination of the species tolerance values, abundance and diversity, a benthic quality index (BQI) was calculated for the assessment of environmental status at a particular station. The qualification of BQI was evaluated in relation to known spatial and temporal gradients of disturbance.

Download full-text


Available from: Mats Blomqvist, Jul 05, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A considerable number of Ireland’s shellfish production areas co-occur with or are adjacent to Natura 2000 sites which are protected under European legislation. To investigate the general interaction between trestle oyster cultivation and the surrounding intertidal environment, six sites were selected within designated Natura 2000 sites. At each trestle site three Treatment areas were sampled. One Treatment area corresponded to potential impacts associated with cultivation activities occurring at trestle structures (designated the Trestle Treatment) while one Treatment area corresponded to potential impacts due to cultivation activities occurring along access routes (the Access Treatment). An area not subject to any known anthropogenic activity was used as a control (the Control Treatment). Potential impacts associated with Trestle Treatment areas included changes in sediment total organic matter (TOM) levels underneath trestles due to the bio-deposition of faecal/pseudofaecal material while the predominant impact associated with Access Treatment areas was compaction of sediments due to heavy vehicle traffic. In this study, macrobenthic communities at the sites were highly variable and exhibited low levels of diversity which prevented the detection of general effects of cultivation activity on community structure, diversity and secondary production. To overcome this variability, the Infaunal Quality Index (IQI) was used to assess impacts on Ecological Status (ES) of benthic communities (sensu Water Framework Directive). Relative to Control and Trestle Treatment areas, activities occurring at Access Treatment areas had a significant negative impact on ES. This study highlights the potential of the IQI for the management of aquaculture activity and provides validation for the use of the IQI in Irish intertidal environments. This study also highlights the IQI as a potential tool for assessing the conservation status of designated habitats in Natura 2000 sites.
    Marine Pollution Bulletin 05/2015; 95(1). DOI:10.1016/j.marpolbul.2015.04.013 · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A rapid visual assessment (RVA) approach for the characterization and assessment of the integrity of coralligenous reefs was applied in 21 stations subjected to different levels of anthropogenic pressure, along the French Mediterranean coasts. The reefs were characterized from both the geomorphologic and bionomic (biotic cover,conspicuous species richness,canopy-forming species, etc.) points of view, and their health status was estimated through the COARSE (COralligenous Assessment by Reef Scape Estimate) index. The sensitivity of the COARSE index and the robustness of the RVA approach to observer biases were analyzed. Results showed that most coralligenous reefs were characterized by (sub)vertical cliffs or platforms with variable slope, usually dominated by biotic facies with Paramuricea clavata and/or Eunicella cavolini in healthy stations, or by algal associations or facies of impoverishment in the most impacted situations. The overall quality scores of the COARSE index generally reflected the putative level of stress of the sampling stations; differences due to observer biases resulted negligible. Coupling the RVA approach with the COARSE index proved an effective protocol for both the characterization and the evaluation of coralligenous reefs: the former is achieved by the analys is of the whole complexity of this habitat, the latter provides for the first time an indication of sea-floor integrity, differently from previous indices that aim at estimating water quality.
    Ecological Indicators 05/2015; 52. DOI:10.1016/j.ecolind.2014.12.026 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The AZTI Marine Biotic Index (AMBI) requires less geographically-specific calibration than other benthic indices, but has not performed as well in US coastal waters as it has in the European waters for which it was originally developed. Here we examine the extent of improvement in index performance when the Ecological Group (EG) classifications on which AMBI is based are derived using local expertise. Twenty-three US benthic experts developed EG scores for each of three regions in the United States, as well as for the US as a whole. Index performance was then compared using: (1) EG scores specific to a region, (2) national EG scores, (3) national EG scores supplemented with standard international EG scores for taxa that the US experts were not able to make assignments, and (4) standard international EG scores. Performance of each scheme was evaluated by diagnosis of condition at pre-defined good/bad sites, concordance with existing local benthic indices, and independence from natural environmental gradients. The AMBI performed best when using the national EG assignments augmented with standard international EG values. The AMBI using this hybrid EG scheme performed well in differentiating apriori good and bad sites (>80% correct classification rate) and AMBI scores were both concordant and correlated (rs = 0.4–0.7) with those of existing local indices. Nearly all of the results suggest that assigning the EG values in the framework of local biogeographic conditions produced a better-performing version of AMBI. The improved index performance, however, was tempered with apparent biases in score distribution. The AMBI, regardless of EG scheme, tended to compress ratings away from the extremes and toward the moderate condition and there was a bias with salinity, where high quality sites received increasingly poorer condition scores with decreasing salinity.
    Ecological Indicators 03/2015; 50:99-107. DOI:10.1016/j.ecolind.2014.11.005 · 3.23 Impact Factor