Article

Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, Albassam M, Zheng X, Leopold WR, Pryer NK, Toogood PLSpecific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 3: 1427-1438

Cancer Pharmacology, Pfizer Global Research and Development, Ann Arbor, Michigan 48105, USA.
Molecular Cancer Therapeutics (Impact Factor: 6.11). 12/2004; 3(11):1427-38.
Source: PubMed

ABSTRACT PD 0332991 is a highly specific inhibitor of cyclin-dependent kinase 4 (Cdk4) (IC50, 0.011 micromol/L) and Cdk6 (IC50, 0.016 micromol/L), having no activity against a panel of 36 additional protein kinases. It is a potent antiproliferative agent against retinoblastoma (Rb)-positive tumor cells in vitro, inducing an exclusive G1 arrest, with a concomitant reduction of phospho-Ser780/Ser795 on the Rb protein. Oral administration of PD 0332991 to mice bearing the Colo-205 human colon carcinoma produces marked tumor regression. Therapeutic doses of PD 0332991 cause elimination of phospho-Rb and the proliferative marker Ki-67 in tumor tissue and down-regulation of genes under the transcriptional control of E2F. The results indicate that inhibition of Cdk4/6 alone is sufficient to cause tumor regression and a net reduction in tumor burden in some tumors.

0 Followers
 · 
166 Views
  • Source
    • "To document that these interactions arise with cell endoge - nous components , we immunoprecipitated RB1 from cells ( Fig - ure 1H ) . We used asynchronously growing HCT116 cells or HCT116 cells treated with the CDK4 / 6 selective inhibitor PD0332991 , which enriches for G1 phase cells with underphos - phorylated , active RB1 ( Fry et al . , 2004 ) , followed by ionizing radiation ( IR ) , to induce DSB damage . These experiments confirmed XRCC5 and XRCC6 associate with RB1 and further revealed an increased amount of XRCC5 and XRCC6 is recov - ered under conditions of RB1 activation and DNA damage , sug - gesting regulation of the interaction ."
    [Show abstract] [Hide abstract]
    ABSTRACT: Deficiencies in DNA double-strand break (DSB) repair lead to genetic instability, a recognized cause of cancer initiation and evolution. We report that the retinoblastoma tumor suppressor protein (RB1) is required for DNA DSB repair by canonical non-homologous end-joining (cNHEJ). Support of cNHEJ involves a mechanism independent of RB1's cell-cycle function and depends on its amino terminal domain with which it binds to NHEJ components XRCC5 and XRCC6. Cells with engineered loss of RB family function as well as cancer-derived cells with mutational RB1 loss show substantially reduced levels of cNHEJ. RB1 variants disabled for the interaction with XRCC5 and XRCC6, including a cancer-associated variant, are unable to support cNHEJ despite being able to confer cell-cycle control. Our data identify RB1 loss as a candidate driver of structural genomic instability and a causative factor for cancer somatic heterogeneity and evolution. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
    Cell Reports 03/2015; 10(12). DOI:10.1016/j.celrep.2015.02.059 · 8.36 Impact Factor
  • Source
    • "In this study, PD-0332991 treatment decreased expression of E2F1 and reduced HOXB9 and its target genes in MCF7 breast carcinoma cells. Treatment with PD-0332991 causes cell cycle arrest through CDK4/6 inhibition, leading to tumor suppression [41]. However, our data suggest that this inhibitor may also act via inhibition of the E2F1-HOXB9 axis. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Homeobox B9 (HOXB9), a member of the homeobox gene family, is overexpressed in breast cancer and promotes tumor progression and metastasis by stimulating epithelial-to-mesenchymal transition and angiogenesis within the tumor microenvironment. HOXB9 activates the TGFβ-ATM axis, leading to checkpoint activation and DNA repair, which engenders radioresistance in breast cancer cells. Despite detailed reports of the role of HOXB9 in breast cancer, the factors that regulate HOXB9 transcription have not been extensively examined. Here we uncover an underlying mechanism that may suggest novel targeting strategies for breast cancer treatment. To identify a transcription factor binding site (TFBS) in the HOXB9 promoter region, a dual luciferase reporter assay was conducted. Protein candidates that may directly attach to a TFBS of HOXB9 were examined by Q-PCR, electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), and mutation analysis. A HOXB9 promoter region from -404 to -392 was identified as TFBS, and E2F1 was a potential binding candidate in this region. The induction of HOXB9 expression by E2F1 was observed by Q-PCR in several breast cancer cell lines overexpressing E2F1. The stimulatory effect of E2F1 on HOXB9 transcription and its ability to bind the TFBS were confirmed by luciferase, EMSA and ChIP assay. Immunohistochemical analysis of 139 breast cancer tissue samples revealed a significant correlation between E2F1 and HOXB9 expression (p<0.001). Furthermore, a CDK4/6 inhibitor suppressed E2F1 expression and also reduced expression of HOXB9 and its downstream target genes. Our in vitro analysis identified the TFBS of the HOXB9 promoter region and suggested that E2F1 is a direct regulator of HOXB9 expression; these data support the strong correlation we found between E2F1 and HOXB9 in clinical breast cancer samples. These results suggest that targeting the E2F1/HOXB9 axis may be a novel strategy for the control or prevention of cancer progression and metastasis.
    PLoS ONE 08/2014; 9(8):e105285. DOI:10.1371/journal.pone.0105285 · 3.23 Impact Factor
  • Source
    • "While multiple CDK-inhibitory agents have been evaluated in clinical trials, only recently have highly specific CDK4/6 inhibitory drugs been developed [29, 30]. Consistent with the function of p16ink4a, they induce a highly potent G1-arrest that is dependent on the suppression of CDK4/6 and the presence of RB tumor suppressor (RB) [31-33]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic ductal adenocarcinoma (PDA) has a poor prognosis, in part, due to the therapy-recalcitrant nature of the disease. Loss of the CDK4/6 inhibitor CDKN2A is a signature genetic event in PDA. Therefore, PDA may be amenable to treatment with pharmaceutical CDK4/6 inhibitors. Surprisingly, response to CDK4/6 inhibition was highly variable in PDA models, and associated with differential suppression of gene expression. Mitotic genes were repressed and FOXM1 was uniformly attenuated; however, genes involved in DNA replication were uniquely suppressed in sensitive models. Aberrant induction of Cyclin E1 was associated with resistance, and knockdown demonstrated synergistic suppression of the cell cycle with CDK4/6 inhibition. Combination therapies are likely required for the effective treatment of disease, and drug screening demonstrated additive/antagonistic interactions with CDK4/6 inhibitors. Agents dependent on mitotic progression (taxanes/PLK1 inhibitors) were antagonized by CDK4/6 inhibition, while the response to 5-FU and gemcitabine exhibited drug specific interactions. PI3K/MTOR and MEK inhibitors potently cooperated with CDK4/6 inhibition. These agents were synergistic with CDK4/6 inhibition, blocked the aberrant upregulation of Cyclin E1, and yielded potent inhibition of tumor cell growth. Together, these data identify novel mechanisms of resistance to CDK4/6 inhibitions and provide a roadmap for combination therapies in the treatment of PDA.
    Oncotarget 08/2014; 5(15):6512-25. · 6.63 Impact Factor
Show more