Article

Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies.

IMM2, Department of Immunology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
Journal of Virology (Impact Factor: 4.65). 12/2004; 78(23):13232-52. DOI: 10.1128/JVI.78.23.13232-13252.2004
Source: PubMed

ABSTRACT Broadly neutralizing monoclonal antibodies (MAbs) are potentially important tools in human immunodeficiency virus type 1 (HIV-1) vaccine design. A few rare MAbs have been intensively studied, but we still have a limited appreciation of their neutralization breadth. Using a pseudovirus assay, we evaluated MAbs from clade B-infected donors and a clade B HIV(+) plasma against 93 viruses from diverse backgrounds. Anti-gp120 MAbs exhibited greater activity against clade B than non-B viruses, whereas anti-gp41 MAbs exhibited broad interclade activity. Unexpectedly, MAb 4E10 (directed against the C terminus of the gp41 ectodomain) neutralized all 90 viruses with moderate potency. MAb 2F5 (directed against an epitope adjacent to that of 4E10) neutralized 67% of isolates, but none from clade C. Anti-gp120 MAb b12 (directed against an epitope overlapping the CD4 binding site) neutralized 50% of viruses, including some from almost every clade. 2G12 (directed against a high-mannose epitope on gp120) neutralized 41% of the viruses, but none from clades C or E. MAbs to the gp120 V3 loop, including 447-52D, neutralized a subset of clade B viruses (up to 45%) but infrequently neutralized other clades (</=7%). MAbs b6 (directed against the CD4 binding site) and X5 (directed against a CD4-induced epitope of gp120) neutralized only sensitive primary clade B viruses. The HIV(+) plasma neutralized 70% of the viruses, including some from all major clades. Further analysis revealed five neutralizing immunotypes that were somewhat associated with clades. As well as the significance for vaccine design, our data have implications for passive-immunization studies in countries where clade C viruses are common, given that only MAbs b12 and 4E10 were effective against viruses from this clade.

1 Bookmark
 · 
76 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inovirus-associated vectors (IAVs) are engineered, non-lytic, filamentous bacteriophages that are assembled primarily from thousands of copies of the major coat protein gp8 and just five copies of each of the four minor coat proteins gp3, gp6, gp7 and gp9. Inovirus display studies have shown that the architecture of inoviruses makes all coat proteins of the inoviral particle accessible to the outside. This particular feature of IAVs allows foreign antigenic peptides to be displayed on the outer surface of the virion fused to its coat proteins and for more than two decades has been exploited in many applications including antibody or peptide display libraries, drug design, and vaccine development against infectious and non-infectious diseases. As vaccine carriers, IAVs have been shown to elicit both a cellular and humoral response against various pathogens through the display of antibody epitopes on their coat proteins. Despite their high immunogenicity, the goal of developing an effective vaccine against HIV-1 has not yet materialized. One possible limitation of previous efforts was the use of broadly neutralizing antibodies, which exhibited autoreactivity properties. In the past five years, however, new, more potent broadly neutralizing antibodies that do not exhibit autoreactivity properties have been isolated from HIV-1 infected individuals, suggesting that vaccination strategies aimed at producing such broadly neutralizing antibodies may confer protection against infection. The utilization of these new, broadly neutralizing antibodies in combination with the architectural traits of IAVs have driven the current developments in the design of an inovirus-based vaccine against HIV-1. This article reviews the applications of IAVs in vaccine development, with particular emphasis on the design of inoviral-based vaccines against HIV-1.
    Viruses 12/2014; 6(12):5047-5076. · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Monoclonal antibodies (mAbs) which potently neutralize a broad range of HIV isolates are potential microbicide candidates. To date, topical application of mAbs in humans and their stability in vaginal secretions has not been studied. To assess the pharmacokinetics and safety of the mAbs 2F5, 4E10 and 2G12 when applied vaginally in women. A randomized, double-blind, placebo-controlled phase 1 trial. Twenty-eight healthy, sexually abstinent women administered 2.5 g of gel daily for 12 days containing either 10 or 20 mg/g of each mAb (MABGEL) or placebo. Main clinical evaluations and sampling occurred at baseline, 1, 8, and 24 hours post-1st dose and 12 and 36 hours post-12th dose. After adjustment for dilution factors, median levels of 2F5, 4E10 and 2G12 in vaginal secretions at 1 hour post high-dose MABGEL were 7.74, 5.28 and 7.48 mg/ml respectively. Levels of 2F5 and 4E10 declined exponentially thereafter with similar estimated half-lives (4.6 and 4.3 hours). In contrast, 2G12 levels declined more rapidly in the first 8 hours, with an estimated half-life of 1.4 hours during this period. There was no evidence of systemic absorption. There were no significant differences in local or systemic adverse event rates or vaginal flora changes (by qPCR) between active and placebo gel arms. Whilst at least 1 adverse event was recorded in 96% of participants, 95% were mild and none were serious. Vaginal application of 50 mg of each mAb daily was safe over a 12 day period. Median mAb concentrations detected at 8 hours post dose were potentially sufficient to block HIV transmission.2G12 exhibited more rapid elimination from the human vagina than 4E10 and 2F5, likely due to poor stability of 2G12 in acidic human vaginal secretions. Further research is needed to develop mAb-based vaginal microbicides and delivery systems. ISRCTN 64808733 UK CRN Portfolio 6470.
    PLoS ONE 12/2014; 9(12):e116153. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Developing a vaccine that overcomes the diversity of HIV-1 is likely to require a strategy that directs antibody (Ab) responses toward conserved regions of the viral Envelope (Env). However, the generation of neutralizing Abs (NAbs) targeting these regions through vaccination has proven to be difficult. One conserved region of particular interest is the membrane proximal external region (MPER) of Env located within the gp41 ectodomain. In order to direct the immune response to this region, the MPER and gp41 ectodomain were expressed separately as N-terminal fusions to the E2 protein of Geobacillus stearothermophilus. The E2 protein acts as a scaffold by self-assembling into 60-mer particles, displaying up to 60 copies of the fused target on the surface. Rabbits were immunized with E2 particles displaying MPER and/or the gp41 ectodomain in conjunction with DNA encoding full-length gp160. Only vaccines including E2 particles displaying MPER elicited MPER-specific Ab responses. NAbs were elicited after two immunizations that largely targeted the V3 loop. To overcome V3 immunodominance in the DNA component, E2 particles displaying MPER were used in conjunction with gp160 DNA lacking hypervariable regions V2, V3, or combined V1V2V3. All rabbits had HIV binding Ab responses and NAbs following the second vaccination. Using HIV-2/HIV-1 MPER chimeric viruses as targets, NAbs were detected in 12/16 rabbits after three immunizations. Low levels of NAbs specific for Tier 1 and 2 viruses were observed in all groups. This study provides evidence that co-immunizing E2 particles displaying MPER and gp160 DNA can focus Ab responses toward conserved regions of Env.
    PLoS ONE 12/2014; 9(12):e113463. · 3.53 Impact Factor

Full-text (2 Sources)

Download
12 Downloads
Available from
May 15, 2014