Comprehensive Cross-Clade Neutralization Analysis of a Panel of Anti-Human Immunodeficiency Virus Type 1 Monoclonal Antibodies

IMM2, Department of Immunology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
Journal of Virology (Impact Factor: 4.65). 12/2004; 78(23):13232-52. DOI: 10.1128/JVI.78.23.13232-13252.2004
Source: PubMed

ABSTRACT Broadly neutralizing monoclonal antibodies (MAbs) are potentially important tools in human immunodeficiency virus type 1 (HIV-1) vaccine design. A few rare MAbs have been intensively studied, but we still have a limited appreciation of their neutralization breadth. Using a pseudovirus assay, we evaluated MAbs from clade B-infected donors and a clade B HIV(+) plasma against 93 viruses from diverse backgrounds. Anti-gp120 MAbs exhibited greater activity against clade B than non-B viruses, whereas anti-gp41 MAbs exhibited broad interclade activity. Unexpectedly, MAb 4E10 (directed against the C terminus of the gp41 ectodomain) neutralized all 90 viruses with moderate potency. MAb 2F5 (directed against an epitope adjacent to that of 4E10) neutralized 67% of isolates, but none from clade C. Anti-gp120 MAb b12 (directed against an epitope overlapping the CD4 binding site) neutralized 50% of viruses, including some from almost every clade. 2G12 (directed against a high-mannose epitope on gp120) neutralized 41% of the viruses, but none from clades C or E. MAbs to the gp120 V3 loop, including 447-52D, neutralized a subset of clade B viruses (up to 45%) but infrequently neutralized other clades (</=7%). MAbs b6 (directed against the CD4 binding site) and X5 (directed against a CD4-induced epitope of gp120) neutralized only sensitive primary clade B viruses. The HIV(+) plasma neutralized 70% of the viruses, including some from all major clades. Further analysis revealed five neutralizing immunotypes that were somewhat associated with clades. As well as the significance for vaccine design, our data have implications for passive-immunization studies in countries where clade C viruses are common, given that only MAbs b12 and 4E10 were effective against viruses from this clade.

Download full-text


Available from: Dennis R Burton, Jul 06, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The native HIV-1 Env complex consists of a gp120/gp41 trimer, but surface plasmon resonance (SPR)-directed binding studies for gp120-binding agents were almost exclusively performed on monomeric gp120. SPR-directed binding kinetics of monomeric gp120 and trimeric gp140 were investigated for a broad variety of envelope (Env)-binding agents. Similar kinetics for carbohydrate-binding agents (CBAs), the antibody 2G12 and sCD4 were observed, irrespective of the oligomeric state of gp120 that either contain the native mixture of complex and high-mannose N-glycans or that contain exclusively oligomannose N-glycans. The generally comparable kinetic properties of CBA, 2G12 and sCD4 binding to monomeric gp120 and trimeric gp140 indicate that monomeric gp120 is a good surrogate molecule for native HIV-1 Env trimer to investigate the binding affinities of Env-binding compounds.
    FEBS letters 02/2013; 587(7). DOI:10.1016/j.febslet.2013.02.037 · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most neutralizing antibodies act at the earliest steps of viral infection and block interaction of the virus with cellular receptors to prevent entry into host cells. The inability to induce neutralizing antibodies to HIV has been a major obstacle to HIV vaccine research since the early days of the epidemic. However, in the past three years, the definition of a neutralizing antibody against HIV has been revolutionized by the isolation of extremely broad and potent neutralizing antibodies from HIV-infected individuals. Considerable hurdles remain for inducing neutralizing antibodies to a protective level after immunization. Meanwhile, novel technologies to bypass the induction of antibodies are being explored to provide prophylactic antibody-based interventions. This review addresses the challenge of inducing HIV neutralizing antibodies upon immunization and considers notable recent advances in the field. A greater understanding of the successes and failures for inducing a neutralizing response upon immunization is required to accelerate the development of an effective HIV vaccine.
    Journal of Experimental Medicine 02/2013; 210(2):209-23. DOI:10.1084/jem.20121827 · 13.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The "glycan shield" exposed on the surface of the HIV-1 gp120 env glycoprotein has been previously proposed as a novel target for anti-HIV treatments. While such targeting of these glycans provides an exciting prospect for HIV treatment, little is known about the conservation and variability of glycosylation patterns within and between the various HIV-1 group M subtypes and circulating recombinant forms. Here, we present evidence of strong strain-specific glycosylation patterns and show that the epitope for the 2G12 neutralising antibody is poorly conserved across HIV-1 group M. The unique glycosylation patterns within the HIV-1 group M subtypes and CRFs appear to explain their varying susceptibility to neutralisation by broadly cross-neutralising (BCN) antibodies. Compensatory glycosylation at linearly distant yet three-dimensionally proximal amino acid positions appears to maintain the integrity of the glycan shield while conveying resistance to neutralisation by BCN antibodies. We find that highly conserved clusters of glycosylated residues do exist on the gp120 trimer surface and suggest that these positions may provide an exciting target for the development of BCN anticarbohydrate therapies.
    12/2012; 2012:823605. DOI:10.5402/2012/823605