Epitope mapping of the phosphorylation motif of the HIV-1 protein Vpu bound to the selective monoclonal antibody using TRNOESY and STD NMR spectroscopy.

Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques (UMR 8601 CNRS), Université René Descartes-Paris V, 45 rue des Saint-Pères, 75270 Paris Cedex 06, France.
Biochemistry (Impact Factor: 3.19). 12/2004; 43(46):14555-65. DOI: 10.1021/bi0492861
Source: PubMed

ABSTRACT The conformational preferences of a 22-amino acid peptide (LIDRLIERAEDpSGNEpSEGEISA) that mimics the phosphorylated HIV-1-encoded virus protein U (Vpu) antigen have been investigated by NMR spectroscopy. Degradation of HIV receptor CD4 by the proteasome, mediated by the HIV-1 protein Vpu, is crucial for the release of fully infectious virions. Phosphorylation of Vpu at sites Ser52 and Ser56 on the DSGXXS motif is required for the interaction of Vpu with the ubiquitin ligase SCF(beta)(-TrCP) which triggers CD4 degradation by the proteasome. This motif is conserved in several signaling proteins known to be degraded by the proteasome. The interaction of the P-Vpu(41-62) peptide with its monoclonal antibody has been studied by transferred nuclear Overhauser effect NMR spectroscopy (TRNOESY) and saturation transfer difference NMR (STD NMR) spectroscopy. The peptide was found to adopt a bend conformation upon binding to the antibody; the peptide residues (Asp51-pSer56) forming this bend are recognized by the antibody as demonstrated by STD NMR experiments. The three-dimensional structure of P-Vpu(41-62) in the bound conformation was determined by TRNOESY spectra; the peptide adopts a compact structure in the presence of mAb with formation of several bends around Leu45 and Ile46 and around Ile60 and Ser61, with a tight bend created by the DpS(52)GNEpS(56) motif. STD NMR studies provide evidence for the existence of a conformational epitope containing tandem repeats of phosphoserine motifs. The peptide's epitope is predominantly located in the large bend and in the N-terminal segment, implicating bidentale association. These findings are in excellent agreement with a recently published NMR structure required for the interaction of Vpu with the SCF(beta)(-TrCP) protein.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A saturation transfer difference (STD) NMR experiment was successfully employed to observe the binding interactions of fosfomycin resistant and non-resistant bacterial strains using living cell suspensions, without the need for isotopic labelling of the ligand or receptor.
    Journal of the Brazilian Chemical Society 01/2011; 22:286-291. DOI:10.1590/S0103-50532011000200014 · 1.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To understand the molecular basis of sequential N-dealkylation by cytochrome P450 2B enzymes, we studied the binding of amidopyrine (AP) as well as the metabolites of this reaction, desmethylamidopyrine (DMAP) and aminoantipyrine (AAP), using the X-ray crystal structure of rabbit P450 2B4 and two nuclear magnetic resonance (NMR) techniques: saturation transfer difference (STD) spectroscopy and longitudinal (T(1)) relaxation NMR. Results of STD NMR of AP and its metabolites bound to P450 2B4 were similar, suggesting that they occupy similar niches within the enzyme's active site. The model-dependent relaxation rates (R(M)) determined from T(1) relaxation NMR of AP and DMAP suggest that the N-linked methyl is closest to the heme. To determine the orientation(s) of AP and its metabolites within the P450 2B4 active site, we used distances calculated from the relaxation rates to constrain the metabolites to the X-ray crystal structure of P450 2B4. Simulated annealing of the complex revealed that the metabolites do indeed occupy similar hydrophobic pockets within the active site, while the N-linked methyls are free to rotate between two binding modes. From these bound structures, a model of N-demethylation in which the N-linked methyl functional groups rotate between catalytic and noncatalytic positions was developed. This study is the first to provide a structural model of a drug and its metabolites complexed to a cytochrome P450 based on NMR and to provide a structural mechanism for how a drug can undergo sequential oxidations without unbinding. The rotation of the amide functional group might represent a common structural mechanism for N-dealkylation reactions for other drugs such as the local anesthetic lidocaine.
    Biochemistry 03/2011; 50(12):2123-34. DOI:10.1021/bi101797v · 3.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to well study the internal body performance for transmission-mode GaAs photocathode of different varied doping structures, two GaAs photocathodes of exponential doping structure and gradient doping structure were designed respectively. Because surface photovoltage spectrum has close relation with the internal properties of GaAs photocathodes, the connection between surface photovoltage and internal electronic field was well discussed through deduction and calculation. The difference of two structures and the value of internal electronic energy were exactly calculated and verified by experiments. The internal band bending energy could form an internal electronic field with the same direction, which could help the photo-excited electrons to move toward surface barrier layer. This research shows a better method to well study the varied doping structures for GaAs photocathode materials and will help to improve the growth structure for transmission-mode GaAs photocathode module in the future.
    Optics Communications 09/2011; 284(19):4520-4524. DOI:10.1016/j.optcom.2011.06.007 · 1.54 Impact Factor