CC and CX3C chemokines differentially interact with the N terminus of the human cytomegalovirus-encoded US28 receptor.

Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Chemistry, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
Journal of Biological Chemistry (Impact Factor: 4.65). 03/2005; 280(5):3275-85. DOI: 10.1074/jbc.M407536200
Source: PubMed

ABSTRACT Human cytomegalovirus (HCMV) is the causative agent of life-threatening systemic diseases in immunocompromised patients as well as a risk factor for vascular pathologies, like atherosclerosis, in immunocompetent individuals. HCMV encodes a G-protein-coupled receptor (GPCR), referred to as US28, that displays homology to the human chemokine receptor CCR1 and binds several chemokines of the CC family as well as the CX3C chemokine fractalkine with high affinity. Most importantly, following HCMV infection, US28 activates several intracellular pathways, either constitutively or in a chemokine-dependent manner. In this study, our goal was to understand the molecular interactions between chemokines and the HCMV-encoded US28 receptor. To achieve this goal, a double approach has been used, consisting in the analysis of both receptor and ligand mutants. This approach has led us to identify several amino acids located in the N terminus of US28 that differentially contribute to the high affinity binding of CC versus CX3C chemokines. Additionally, our results highlight the importance of secondary modifications occurring at US28, such as sulfation, for ligand recognition. Finally, the effects of chemokine dimerization and interaction with glycosaminoglycans (GAGs) on chemokine binding and activation of US28 were investigated as well using CCL4 as model ligand. In line with the two-state model describing chemokine/receptor interaction, we show that an aromatic residue in the N-loop region of CCL4 promotes tight binding to US28, whereas receptor activation depends on the presence of the N terminus of CCL4, as shown previously for CCR5.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bei Asthma handelt es sich um eine chronisch-entzündliche Erkrankung der Atemwege, an der bis zu 15% der Bevölkerung in den industrialisierten Ländern leiden. Die charakteristische Entzündungsreaktion wird mitunter durch eosinophile Granulozyten vermittelt, die über den CCR3 Rezeptor aktiviert werden. Der CCR3 stellt daher eine viel versprechende therapeutische Zielstruktur dar, um diese Entzündungsreaktion und die damit einhergehende Zerstörung des Lungengewebes mit geeigneten Rezeptorantagonisten zu unterbinden. Um die Rezeptor-Ligand-Wechselwirkung besser verstehen zu können, wurde ein Rezeptormodell erstellt, das es im Rahmen dieser Arbeit zu überprüfen galt. Dazu wurden 8 ausgewählte Aminosäuren der Transmembrandomäne (TMD) des humanen CCR3 mutiert, Zellen mit den CCR3-Mutanten transfiziert und deren Einfluss auf die Ligandeninteraktion experimentell mittels eines Rezeptorinternalisierungsassays überprüft. Die in dieser Arbeit generierten Daten belegen eindeutig, dass einige der Aminosäuren (Y113, H114 und Y291) starken Einfluss auf die Wechselwirkung der Liganden mit dem Rezeptor haben. Demgegenüber konnte für andere Aminosäuren (R95A, Y41A) gezeigt werden, dass diese die Wirkung verschiedener Liganden erhöhen oder beeinträchtigen. Erstaunlich dabei ist, dass sowohl natürliche Liganden als auch untersuchte chemische Moleküle für einige Mutationen gleichermaßen in ihrer Wirkung beeinträchtigt werden. Dies erweitert die bisherige Vorstellung, dass natürliche Liganden nur über den N-Terminus sowie über die extrazellulären Loops mit dem Rezeptor, nicht aber mit Bereichen der TMD interagieren. Die entsprechenden Aminosäuren sind nach den hier erhaltenen Daten an der Interaktion von Ligand und Rezeptor und/oder der nachgeschalteten Signaltransduktion beteiligt. Der Vergleich zu anderen GPCR Studien legt eine Beeinträchtigung der Bindung und damit überlappender Interaktionsstellen für natürliche Liganden und chemische Moleküle sehr nahe. Asthma is a chronic-inflammatory disease of the airways and about 15% of the population in the industrialized countries suffer from it. The characteristic inflammation of the lung is, amongst others, caused by eosinophilic granulozytes which get activated via chemotactic receptor 3 (CCR3). In order to stop activation of eosinophils and the following inflammation and destruction of the lung tissue, research aims to develop specific receptor antagonists. This turns CCR3 into an interesting and promising therapeutic target. To better understand the interaction of receptor and ligands a receptor model was established which should be verified experimentally. Eight specific amino acids (AA) which are located in the transmembranal region (TMR) of CCR3 were mutated and CHO-cells were transfected with them. The influence of the mutations on ligand-receptor interaction were investigated using an receptor internalisation assay. The data obtained clearly demonstrate that some AA (Y113, H114, Y291) have strong influence on the interaction of ligands with CCR3. For other AA (R95, Y41) it could be shown that they either decrease or even increase interaction of different ligands. Both could be demonstrated for natural ligands as well as agonistic and antagonistic small molecules. This was very surprising as up to now it is believed that natural ligands only interact with the N-terminal region of the receptor, but not with the TMR. Based on the data obtained some of the investigated AA are clearly involved in ligand-receptor interaction and/or signal transduction. Comparisons to similar GPCR studies also suggest an impairment of binding of the ligands and therefore overlapping interaction sides of natural ligands and small molecules.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Herpesviruses encode membrane-associated G protein-coupled receptors (GPCRs) in their viral genomes that are structurally similar to chemokine receptors. These GPCRs hijack GPCR-mediated cellular signalling networks of the host for survival, replication and pathogenesis. In particular the herpesvirus-encoded chemokine receptors ORF74, BILF1 and US28, which are present at inflammatory sites and tumour cells, provide important virus-specific targets for directed therapies. Given the high druggability of GPCRs in general, these viral GPCRs can be considered promising antiviral drug targets.
    dressNature Reviews Drug Discovery 01/2014; · 33.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our study on the highly charged N-terminal peptide of the human chemokine receptor CXCR3 by spectroscopic methods in solution and by means ofmolecular dynamics simulations showed that the charge content modulates the intrinsic structural preference of its flexible backbone. Collectively, our findings suggest that the structural organization of a protein should be seen as a part of a continuum in which the ratio between electrostatic and hydrophobic interactions and the intrinsic flexibility are important properties used to optimize the folding. When this ratio changes and the structure is intrinsically flexible, the structural organization of the system moves along the continuum of the possible conformational states. By all this combined information, one can describe the structure of CXCR3(1–48) as an ensemble of conformations. In fact, the peptide shows stretches of negative charges embedded in a flexible sequence which can be used to maximize promiscuous interactions relevant to molecular recognition but globally the peptide appears as a poly-structured globule-like ensemble that is dynamically stabilized by H-bonds. We have approached the study of the most populated ensembles with subset selection to explain our experimental data also by evidencing that the changes into the fraction of charged residues discriminate between dynamically poly-structured states, conceivably because of small free energy barriers existing between the different conformations of CXCR3(1–48). Therefore, the overlap of a highly flexible backbone, negatively charged residues and sites which can be modified by post-translational modifications represent the structural organization that controls the molecular mechanisms underlying the biological functions carried out by CXCR3(1–48).
    Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics 08/2014; 1844(10):1868–1880. · 3.73 Impact Factor