Solvent dependence of PII conformation in model alanine peptides.

Department of Chemistry, New York University, New York, New York 10003, USA.
Journal of the American Chemical Society (Impact Factor: 11.44). 12/2004; 126(46):15141-50. DOI: 10.1021/ja047594g
Source: PubMed

ABSTRACT Alanine residues in two model peptides, the pentapeptide AcGGAGGNH(2) and the 11mer AcO(2)A(7)O(2)NH(2), have been reported to have substantial PII conformation in water. The PII structure in both peptides is sensitive to solvent. In the presence of the organic solvent TFE, the conformation of the pentamer changes from PII to internally H-bonded gamma or beta turns, while the chain with seven alanines forms alpha helix. The PII structure in the 11mer is more stable than that in the shorter peptide as the TFE concentration increases. For the pentamer, a comparison of short-chain aliphatic alcohols to water shows that the PII content decreases in the order water > methanol > ethanol > 2-propanol, linearly according to empirical scales of solvent polarity. Thus, depending on the extent of local solvation as folding progresses, the peptide backbone as modeled by alanine oligomers shifts from PII to internally H-bonded (gamma or beta turn) conformations and to alpha helix in longer segments. On the other hand, the PII content of AcO(2)A(7)O(2)NH(2) increases significantly in the presence of guanidine, as does that of oligoproline peptides, while detergent sodium dodecyl sulfate (SDS) favors alpha helix in this peptide. The shorter peptide does not show a parallel increase in PII with guanidine.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The impact of pressure on the backbone (15) N, (1) H and (13) C chemical shifts in N-terminally acetylated α-synuclein has been evaluated over a pressure range 1-2500 bar. Even while the chemical shifts fall very close to random coil values, as expected for an intrinsically disordered protein, substantial deviations in the pressure dependence of the chemical shifts are seen relative to those in short model peptides. In particular, the nonlinear pressure response of the (1) H(N) chemical shifts, which commonly is associated with the presence of low-lying "excited states", is much larger in α-synuclein than in model peptides. The linear pressure response of (1) H(N) chemical shift, commonly linked to H-bond length change, correlates well with those in short model peptides, and is found to be anticorrelated with its temperature dependence. The pressure dependence of (13) C chemical shifts shows remarkably large variations, even when accounting for residue type, and do not point to a clear shift in population between different regions of the Ramachandran map. However, a nearly universal decrease in (3) JHN-Hα by 0.22±0.05 Hz suggests a slight increase in population of the polyproline II region at 2500 bar. The first six residues of N-terminally acetylated synuclein show a transient of approximately 15 % population of α-helix, which slightly diminishes at 2500 bar. The backbone dynamics of the protein is not visibly affected beyond the effect of slight increase in water viscosity at 2500 bar.
    ChemBioChem 06/2013; · 3.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of accurate implicit solvation models with low computational cost is essential for addressing many large-scale biophysical problems. Here, we present an efficient solvation term based on a Gaussian solvent-exclusion model (EEF1) for simulations of proteins in aqueous environment, with the primary aim of having a good overlap with explicit solvent simulations, particularly for unfolded and disordered states - as would be needed for multiscale applications. In order to achieve this, we have used a recently proposed coarse-graining procedure based on minimization of an entropy-related objective function to train the model to reproduce the equilibrium distribution obtained from explicit water simulations. Via this methodology, we have optimized both a charge screening parameter and a backbone torsion term against explicit solvent simulations of an α-helical and a β-stranded peptide. The performance of the resulting effective energy function, termed EEF1-SB, is tested with respect to the properties of folded proteins, the folding of small peptides or fast-folding proteins, and NMR data for intrinsically disordered proteins. The results show that EEF1-SB provides a reasonable description of a wide range of systems, but its key advantage over other methods tested is that it captures very well the structure and dimension of disordered or weakly structured peptides. EEF1-SB is thus a computationally inexpensive (~ 10 times faster than Generalized-Born methods) and transferable approximation for treating solvent effects.
    Journal of Chemical Theory and Computation 12/2013; 9(12):5641-5652. · 5.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The prolactin releasing peptide (PrRP) is involved in regulating food intake and body weight homeostasis, but molecular details on the activation of the PrRP receptor remain unclear. C-terminal segments of PrRP with 20 (PrRP20) and 13 (PrRP8-20) amino acids, respectively, have been suggested to be fully active. The data presented herein indicate this is true for the wildtype receptor only; a 5-10-fold loss of activity was found for PrRP8-20 compared to PrRP20 at two extracellular loop mutants of the receptor. To gain insight into the secondary structure of PrRP, we used CD spectroscopy performed in TFE and SDS. Additionally, previously reported NMR data, combined with ROSETTANMR, were employed to determine the structure of amidated PrRP20. The structural ensemble agrees with the spectroscopic data for the full-length peptide, which exists in an equilibrium between α- and 3(10) -helix. We demonstrate that PrRP8-20's reduced propensity to form an α-helix correlates with its reduced biological activity on mutant receptors. Further, distinct amino acid replacements in PrRP significantly decrease affinity and activity but have no influence on the secondary structure of the peptide. We conclude that formation of a primarily α-helical C-terminal region of PrRP is critical for receptor activation. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 273-281, 2013.
    Biopolymers 05/2013; 99(5):314-25. · 2.29 Impact Factor