Article

The cationic charges on Arg347, Arg358 and Arg449 of human cytochrome P450c17 (CYP17) are essential for the enzyme's cytochrome b5-dependent acyl-carbon cleavage activities.

Department of Chemistry, Centre for Chemical Biology, University of Sheffield, Sheffield S3 7HF, UK.
The Journal of Steroid Biochemistry and Molecular Biology (Impact Factor: 3.98). 11/2004; 92(3):119-30. DOI: 10.1016/j.jsbmb.2004.07.005
Source: PubMed

ABSTRACT CYP17 (17alpha-hydroxylase-17,20-lyase; also P450c17 or P450(17alpha)) catalyses the17alpha-hydroxylation of progestogens and the subsequent acyl-carbon cleavage of the 17alpha-hydroxylated products (lyase activity) in the biosynthesis of androgens. The enzyme also catalyses another type of acyl-carbon cleavage (direct cleavage activity) in which the 17alpha-hydroxylation reaction is by-passed. Human CYP17 is heavily dependent on the presence of the membrane form of cytochrome b(5) for both its lyase and direct cleavage activities. In the present study it was found that substitution of human CYP17 amino acids, Arg(347), Arg(358) and Arg(449), with non-cationic residues, yielded variants that were impaired in the two acyl-carbon bond cleavage activities, quantitatively to the same extent and these were reduced to between 3 and 4% of the wild-type protein. When the arginines were replaced by lysines, the sensitivity to cytochrome b(5) was restored and the acyl-carbon cleavage activities were recovered. All of the human mutant CYP17 proteins displayed wild-type hydroxylase activity, in the absence of cytochrome b(5). The results suggest that the bifurcated cationic charges at Arg(347), Arg(358) and Arg(449) make important contributions to the formation of catalytically competent CYP17.cytochrome b(5) complex. The results support our original proposal that the main role of cytochrome b(5) is to promote protein conformational changes which allow the iron-peroxo anion to form a tetrahedral adduct that fragments to produce the acyl-carbon cleavage products.

0 Bookmarks
 · 
52 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The membrane heme protein cytochrome b5 (b5) can enhance, inhibit, or have no effect on cytochrome P450 (P450) catalysis, depending on the specific P450, substrate, and reaction conditions, but the structural basis remains unclear. Herein the interactions between the soluble domain of microsomal b5 and the catalytic domain of the bi-functional steroidogenic cytochrome P450 17A1 (CYP17A1) were investigated. CYP17A1 performs both steroid hydroxylation, which is unaffected by b5, and an androgen-forming lyase reaction which is facilitated 10-fold by b5. NMR chemical shift mapping of b5 titrations with CYP17A1 indicate that the interaction occurs in an intermediate exchange regime and identifies charged surface residues involved in the protein/protein interface. The role of these residues is confirmed by disruption of the complex upon mutagenesis of either the anionic b5 residues (E48 or E49) or the corresponding cationic CYP17A1 residues (R347, R358, or R449). Cytochrome b5 binding to CYP17A1 is also mutually exclusive with binding of NADPH-cytochrome P450 reductase (CPR). To probe the differential effects of b5 on the two CYP17A1-mediated reactions and thus communication between the superficial b5 binding site and the buried CYP17A1 active site, CYP17A1/b5 complex formation was characterized with either hydroxylase or lyase substrates bound to CYP17A1. Significantly, the CYP17A1/b5 interaction is stronger when the hydroxylase substrate pregnenolone is present in the CYP17A1 active site than when the lyase substrate 17α-hydroxypregnenolone is in the active site. These findings form the basis for a clearer understanding of this important interaction by directly measuring the reversible binding of the two proteins, providing evidence of communication between the CYP17A1 active site and the superficial proximal b5 binding site.
    Journal of Biological Chemistry 04/2013; · 4.65 Impact Factor
  • Source
  • Source