A novel HLA-A*3303-restricted minor histocompatibility antigen encoded by an unconventional open reading frame of human TMSB4Y gene.

Division of Immunology, Aichi Cancer Center Research Institute, Aichi Cancer Center Hospital, Nagoya, Japan.
The Journal of Immunology (Impact Factor: 5.36). 01/2005; 173(11):7046-54. DOI: 10.4049/jimmunol.173.11.7046
Source: PubMed

ABSTRACT Female-to-male hemopoietic stem cell transplantation (HSCT) elicits T cell responses against male-specific minor histocompatibility (H-Y) Ags encoded by the Y chromosome. All previously identified H-Y Ags are encoded by conventional open reading frames, but we report in this study the identification of a novel H-Y Ag encoded in the 5'-untranslated region of the TMSB4Y gene. An HLA-A*3303-restricted CD8(+) CTL clone was isolated from a male patient after an HSCT from his HLA-identical sister. Using a panel of cell lines carrying Y chromosome terminal deletions, a narrow region controlling the susceptibility of these target cells to CTL recognition was localized. Minigene transfection and epitope reconstitution assays identified an 11-mer peptide, EVLLRPGLHFR, designated TMSB4Y/A33, whose first amino acid was located 405 bp upstream of the TMSB4Y initiation codon. Analysis of the precursor frequency of CTL specific for recipient minor histocompatibility Ags in post-HSCT peripheral blood T cells revealed that a significant fraction of the total donor CTL response in this patient was directed against the TMSB4Y epitope. Tetramer analysis continued to detect TMSB4Y/A33-specific CD8(+) T cells at least up to 700 days post-HSCT. This finding underscores the in vivo immunological relevance of minor histocompatibility Ags derived from unconventional open reading frame products.


Available from: Kunio Tsujimura, Jun 02, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The genetic transfer of T-cell receptors (TCRs) directed toward target antigens into T lymphocytes has been used to generate antitumor T cells efficiently without the need for the in vitro induction and expansion of T cells with cognate specificity. Alternatively, T cells have been gene-modified with a TCR-like antibody or chimeric antigen receptor (CAR). We show that immunization of HLA-A2 transgenic mice with tetramerized recombinant HLA-A2 incorporating HA-1 H minor histocompatibility antigen (mHag) peptides and β2-microglobulin (HA-1 H/HLA-A2) generate highly specific antibodies. One single-chain variable region moiety (scFv) antibody, #131, demonstrated high affinity (KD=14.9 nM) for the HA-1 H/HLA-A2 complex. Primary human T cells transduced with #131 scFV coupled to CD28 transmembrane and CD3ζ domains were stained with HA-1 H/HLA-A2 tetramers slightly more intensely than a cytotoxic T lymphocyte (CTL) clone specific for endogenously HLA-A2- and HA-1 H-positive cells. Although #131 scFv CAR-T cells required >100-fold higher antigen density to exert cytotoxicity compared with the cognate CTL clone, they could produce inflammatory cytokines against cells expressing HLA-A2 and HA-1 H transgenes. These data implicate that T cells with high-affinity antigen receptors reduce the ability to lyse targets with low-density peptide/MHC complexes (~100 per cell), while they could respond at cytokine production level.Gene Therapy advance online publication, 3 April 2014; doi:10.1038/gt.2014.30.
    Gene therapy 04/2014; DOI:10.1038/gt.2014.30 · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: H-Y antigens are a group of minor histocompatibility antigens encoded on the Y-chromosome with homologous H-X antigens on the X-chromosome. The disparate regions of the H-Y antigens are highly immunogenic and play an important role in understanding human alloimmunity. In this review, we investigate the history of H-Y antigen discovery along with their critical contributions in transplantation and pregnancy. In hematopoietic cell transplantation, male recipients with female donors who become seropositive for B-cell responses as H-Y antibodies following transplantation have increased rates of chronic graft-versus-host disease and decreased rates of relapse. Conversely, female patients who receive male kidney allografts are more likely than other gender combinations to develop H-Y antibodies and reject their allografts. Finally, in the setting of pregnancy, mothers who initially gave birth to boys are more likely to have subsequent pregnancy complications, including miscarriages, in association with H-Y antibody development. H-Y antigens continue to serve as a model for alloimmunity in new clinical scenarios. Our development of more sensitive antibody detection and next-generation DNA sequencing promises to further advance our understanding and better predict the clinical consequences of alloimmunity.
    Immunologic Research 04/2014; 58(2-3). DOI:10.1007/s12026-014-8514-3 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The infiltration of human tumors by T cells is a common phenomenon, and over the past decades, it has become increasingly clear that the nature of such intratumoral T-cell populations can predict disease course. Furthermore, intratumoral T cells have been utilized therapeutically in clinical studies of adoptive T-cell therapy. In this review, we describe how novel methods that are either based on T-cell receptor (TCR) sequencing or on cancer exome analysis allow the analysis of the tumor reactivity and antigen-specificity of the intratumoral TCR repertoire with unprecedented detail. Furthermore, we discuss studies that have started to utilize these techniques to probe the link between cancer exomes and the intratumoral TCR pool. Based on the observation that both the cancer epitope repertoire and intratumoral TCR repertoire appear highly individual, we outline strategies, such as 'autologous TCR gene therapy', that exploit the tumor-resident TCR repertoire for the development of personalized immunotherapy.
    Immunological Reviews 01/2014; 257(1):72-82. DOI:10.1111/imr.12140 · 12.91 Impact Factor