Article

Hexavalent chromium and lung cancer in the chromate industry: a quantitative risk assessment.

US Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, 4676 Columbia Parkway, MS C-15, Cincinnati, OH 45226-1998, USA.
Risk Analysis (Impact Factor: 2.28). 11/2004; 24(5):1099-108. DOI: 10.1111/j.0272-4332.2004.00512.x
Source: PubMed

ABSTRACT The purpose of this investigation was to estimate excess lifetime risk of lung cancer death resulting from occupational exposure to hexavalent-chromium-containing dusts and mists. The mortality experience in a previously studied cohort of 2,357 chromate chemical production workers with 122 lung cancer deaths was analyzed with Poisson regression methods. Extensive records of air samples evaluated for water-soluble total hexavalent chromium were available for the entire employment history of this cohort. Six different models of exposure-response for hexavalent chromium were evaluated by comparing deviances and inspection of cubic splines. Smoking (pack-years) imputed from cigarette use at hire was included in the model. Lifetime risks of lung cancer death from exposure to hexavalent chromium (assuming up to 45 years of exposure) were estimated using an actuarial calculation that accounts for competing causes of death. A linear relative rate model gave a good and readily interpretable fit to the data. The estimated rate ratio for 1 mg/m3-yr of cumulative exposure to hexavalent chromium (as CrO3), with a lag of five years, was RR=2.44 (95% CI=1.54-3.83). The excess lifetime risk of lung cancer death from exposure to hexavalent chromium at the current OSHA permissible exposure limit (PEL) (0.10 mg/m3) was estimated to be 255 per 1,000 (95% CI: 109-416). This estimate is comparable to previous estimates by U.S. EPA, California EPA, and OSHA using different occupational data. Our analysis predicts that current occupational standards for hexavalent chromium permit a lifetime excess risk of dying of lung cancer that exceeds 1 in 10, which is consistent with previous risk assessments.

0 Bookmarks
 · 
133 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chromium is a significant mutagen and carcinogen in environment. We compared the effects of tri- and hexavalent chromium on cytotoxicity and oxidative stress in yeast. Cell growth was inhibited by Cr(3+) or Cr(6+), and Cr(6+) significantly increased the lethal rate compared with Cr(3+). Both Cr(3+) and Cr(6+) can enter into the yeast cells. The percent of propidium iodide permeable cells treated with Cr(3+) is almost five times as that treated with the same concentration of Cr(6+). Levels of TBARS, O2 (-), and carbonyl protein were significantly increased in both Cr(6+)- and Cr(3+)-treated cells in a concentration- and time-dependent manner. Moreover, the accumulation of these stress markers in Cr(6+)-treated cells was over the Cr(3+)-treated ones. The decreased GSH level and increased activity of GPx were observed after 300 μM Cr(6+)-exposure compared with the untreated control, whereas there was no other change of GSH content in cells treated with Cr(3+) even at very high concentration. Exposure to both Cr(3+) and Cr(6+) resulted in the decrease of activities of SOD and catalase. Furthermore, the effect of Cr(6+) is stronger than that of Cr(3+). Null mutation sensitivity assay demonstrated that the gsh1 mutant was sensitive to Cr(6+) other than Cr(3+), the apn1 mutant is more sensitive to Cr(6+) than Cr(3+), and the rad1 mutant is sensitive to both Cr(6+) and Cr(3+). Therefore, Cr(3+) can be concluded to inhibit cell growth probably due to the damage of plasma membrane integrality in yeast. Although both tri- and hexavalent chromium can induce cytotoxicity and oxidative stress, the action mode of Cr(3+) is different from that of Cr(6+), and serious membrane damage caused by Cr(3+) is not the direct consequence of the increase of lipid peroxidation.
    Current Microbiology 12/2013; · 1.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A unit risk factor (URF) was developed for hexavalent chromium (CrVI). The URF is based on excess lung cancer mortality in two key epidemiological studies of chromate production workers. The Crump et al. (2003) study concerns the Painesville, OH worker cohort, while Gibb et al. (2000) regards the Baltimore, MD cohort. A supporting assessment was also performed for a cohort from four low-dose chromate plants (Leverkusen and Uerdingen, Germany, Corpus Christi, TX, Castle Hayne, NC). For the Crump et al. (2003) study, grouped observed and expected number of lung cancer mortalities along with cumulative CrVI exposures were used to obtain the maximum likelihood estimate and asymptotic variance of the slope (β) for the linear multiplicative relative risk model using Poisson regression modeling. For the Gibb et al. (2000) study, Cox proportional hazards modeling was performed with optimal exposure lag and adjusting for the effect of covariates (e.g., smoking) to estimate β values. Life-table analyses were used to develop URFs for each of the two key studies, as well as for supporting and related studies. The two key study URFs were combined using weighting factors relevant to confidence to derive the final URF for CrVI of 2.3E-03 per μg CrVI/m(3).
    Regulatory Toxicology and Pharmacology 12/2013; · 2.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Welders are exposed to high concentrations of nanoparticles. Compared to larger particles, nanoparticles have been associated with more toxic effects at the cellular level, including the generation of more reactive oxygen species activity. Current methods for welding-fume aerosol exposures do not differentiate between the nano-fraction and the larger particles. The objectives of this work are to establish a method to estimate the respiratory deposition of the nano-fraction of selected metals in welding fumes and test this method in a laboratory setting. Manganese (Mn), Nickel (Ni), Chromium (Cr) and hexavalent chromium (Cr(VI)) are commonly found in welding fume aerosols and have been linked with severe adverse health outcomes. Inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC) were evaluated as methods for analyzing the content of Mn, Ni, Cr and Cr(VI) nanoparticles in welding fumes collected with nanoparticle respiratory deposition (NRD) samplers. NRD samplers collect nanoparticles at deposition efficiencies that closely resemble physiological deposition in the respiratory tract. The limits of detection (LODs) and quantitation (LOQs) for ICP-MS and IC were determined analytically. Mild and stainless steel welding fumes generated with a robotic welder were collected with NRD samplers inside a chamber. LODs (LOQs) for Mn, Ni, Cr, and Cr(VI) were 1.3 μg (4.43 μg); 0.4 μg (1.14 μg), 1.1 μg (3.33 μg), and 0.4 μg (1.42 μg), respectively. Recovery of spiked samples and certified welding fume reference material was greater than 95%. When testing the method, the average percentage of total mass concentrations collected by the NRD samplers was ∼30% for Mn, ∼50% for Cr and ∼60% for Ni, indicating that a large fraction of the metals may lay in the nanoparticle fraction. This knowledge is critical to the development of toxicological studies aimed at finding links between exposure to welding fume nanoparticles and adverse health effects. Future work will involve the validation of the method in workplace settings.
    Journal of Occupational and Environmental Hygiene 05/2014; · 1.28 Impact Factor

Full-text (2 Sources)

View
70 Downloads
Available from
Jun 3, 2014