Article

Protective role of metallothionein in acute lung injury induced by bacterial endotoxin.

National Institute for Environmental Studies, Tsukuba, Japan.
Thorax (Impact Factor: 8.56). 01/2005; 59(12):1057-62. DOI: 10.1136/thx.2004.024232
Source: PubMed

ABSTRACT Metallothionein (MT) is a protein that can be induced by inflammatory mediators and participate in cytoprotection. However, its role in inflammation remains to be established. A study was undertaken to determine whether intrinsic MT protects against acute inflammatory lung injury induced by bacterial endotoxin in MT-I/II knock out (-/-) and wild type (WT) mice.
MT (-/-) and WT mice were given vehicle or lipopolysaccharide (LPS, 125 microg/kg) intratracheally and the cellular profile of the bronchoalveolar lavage (BAL) fluid, pulmonary oedema, lung histology, expression of proinflammatory molecules, and nuclear localisation of nuclear factor-kappaB (NF-kappaB) in the lung were evaluated.
MT (-/-) mice were more susceptible than WT mice to lung inflammation, especially to lung oedema induced by intratracheal challenge with LPS. After LPS challenge, MT deficiency enhanced vacuolar degeneration of pulmonary endothelial cells and type I alveolar epithelial cells and caused focal loss of the basement membrane. LPS treatment caused no significant differences in the enhanced expression of proinflammatory cytokines and chemokines nor in the activation of the NF-kappaB pathway in the lung between the two genotypes. Lipid peroxide levels in the lungs were significantly higher in LPS treated MT (-/-) mice than in LPS treated WT mice.
Endogenous MT protects against acute lung injury related to LPS. The effects are possibly mediated by the enhancement of pulmonary endothelial and epithelial integrity, not by the inhibition of the NF-kappaB pathway.

0 Followers
 · 
96 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resolvin D1 (RvD1), an endogenous lipid mediator derived from docosahexaenoic acid, has been reported to promote a biphasic activity in anti-inflammatory response and regulate inflammatory resolution. The present study aimed to determine the endogenous expression pattern of RvD1 in a rat model of self-resolution of lipopolysaccharide (LPS)-induced acute respiratory distress syndrome (ARDS) and inflammation. The ARDS model was induced by administrating LPS (2 mg/kg) via tracheotomy in 138 male Sprague–Dawley rats. At specified time points, lung injury and inflammation were respectively assessed by lung histology and analysis of bronchoalveolar lavage fluid and cytokine levels. The expression of endogenous RvD1 was detected by high performance liquid chromatography and tandem mass spectrometry. The results showed that histological lung injury peaked between 6 h (LPS6h) and day 3, followed by recovery over 4–10 days after LPS administration. Lung tissue polymorph nuclear cell (PMN) was significantly increased at LPS6h, and peaked between 6 h to day 2. The levels of interleukin (IL)-6 and IL-10 were significantly increased at LPS6h and remained higher over day 10 as compared to baseline. Intriguingly, the endogenous RvD1 expression was decreased gradually during the first 3 days, followed by almost completely recovery over days 9–10. The finding indicated that endogenous RvD1 underwent a decrease in expression followed by gradual increase that was basically coincident with the lung injury recovery in a rat model of self-resolution LPS-induced ARDS and inflammation. Our results may help define the optimal therapeutic window for endogenous RvD1 to prevent or treat LPS-induced ARDS and inflammation.
    International Immunopharmacology 11/2014; DOI:10.1016/j.intimp.2014.09.001 · 2.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metallothioneins are cysteine-rich, small metal-binding proteins present in various mammalian tissues. Of the four common metallothioneins, MT-1 and MT-2 (MTs) are expressed in most tissues, MT-3 is predominantly present in brain, whereas MT-4 is restricted to the squamous epithelia. The expression of MT-1 and MT-2 in some organs exhibits sex, age, and strain differences, and inducibility with a variety of stimuli. In adult mammals, MTs have been localized largely in the cell cytoplasm, but also in lysosomes, mitochondria and nuclei. The major physiological functions of MTs include homeostasis of essential metals Zn and Cu, protection against cytotoxicity of Cd and other toxic metals, and scavenging free radicals generated in oxidative stress. The role of MTs in Cd-induced acute and chronic toxicity, particularly in liver and kidneys, is reviewed in more details. In acute toxicity, liver is the primary target, whereas in chronic toxicity, kidneys are major targets of Cd. The intracellular MTs bind Cd ions and form CdMT. In chronic intoxication, Cd stimulates de novo synthesis of MTs; it is assumed that toxicity in the cells starts when loading with Cd ions exceeds the buffering capacity of intracellular MTs. CdMT, released from the Cd-injured organs, or when applied parenterally for experimental purposes, reaches the kidneys via circulation, where it is filtered, endocytosed in the proximal tubule cells, and degraded in lysosomes. Liberated Cd can immediately affect the cell structures and functions. The resulting proteinuria and CdMT in the urine can be used as biomarkers of tubular injury.
    Biology of Metals 10/2010; 23(5):897-926. DOI:10.1007/s10534-010-9351-z · 2.69 Impact Factor
  • Source

Preview

Download
0 Downloads
Available from